Cholesterol elevation impairs glucose-stimulated Ca(2+) signaling in mouse pancreatic β-cells. 2011

Andy K Lee, and Valerie Yeung-Yam-Wah, and Frederick W Tse, and Amy Tse
Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.

Recent studies have demonstrated that cholesterol elevation in pancreatic islets is associated with a reduction in glucose-stimulated insulin secretion, but the underlying cellular mechanisms remain elusive. Here, we show that cholesterol enrichment dramatically reduced the proportion of mouse β-cells that exhibited a Ca(2+) signal when stimulated by high glucose. When cholesterol-enriched β-cells were challenged with tolbutamide, there was a decrease in the amplitude of the Ca(2+) signal, and it was associated with a reduction in the cell current density of voltage-gated Ca(2+) channels (VGCC). Although the cell current densities of the ATP-dependent K(+) channels and the delayed rectifier K(+) channels were also reduced in the cholesterol-enriched β-cells, glucose evoked only a small depolarization in these cells. In cholesterol-enriched cells, the glucose-mediated increase in cellular ATP content was dramatically reduced, and this was related to a decrease in glucose uptake via glucose transporter 2 and an impairment of mitochondrial metabolism. Thus, cholesterol enrichment impaired glucose-stimulated Ca(2+) signaling in β-cells via two mechanisms: a decrease in the current density of VGCC and a reduction in glucose-stimulated mitochondrial ATP production, which in turn led to a smaller glucose-evoked depolarization. The decrease in VGCC-mediated extracellular Ca(2+) influx in cholesterol-enriched β-cells was associated with a reduction in the amount of exocytosis. Our findings suggest that defect in glucose-stimulated Ca(2+) signaling is an important mechanism underlying the impairment of glucose-stimulated insulin secretion in islets with elevated cholesterol level.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

Andy K Lee, and Valerie Yeung-Yam-Wah, and Frederick W Tse, and Amy Tse
April 2018, The Journal of biological chemistry,
Andy K Lee, and Valerie Yeung-Yam-Wah, and Frederick W Tse, and Amy Tse
September 2025, Foods (Basel, Switzerland),
Andy K Lee, and Valerie Yeung-Yam-Wah, and Frederick W Tse, and Amy Tse
November 2025, eLife,
Andy K Lee, and Valerie Yeung-Yam-Wah, and Frederick W Tse, and Amy Tse
January 2013, Diabetes,
Andy K Lee, and Valerie Yeung-Yam-Wah, and Frederick W Tse, and Amy Tse
January 2020, Diabetes, metabolic syndrome and obesity : targets and therapy,
Andy K Lee, and Valerie Yeung-Yam-Wah, and Frederick W Tse, and Amy Tse
January 2013, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Andy K Lee, and Valerie Yeung-Yam-Wah, and Frederick W Tse, and Amy Tse
November 2017, Biochemical and biophysical research communications,
Andy K Lee, and Valerie Yeung-Yam-Wah, and Frederick W Tse, and Amy Tse
December 1999, The Journal of biological chemistry,
Andy K Lee, and Valerie Yeung-Yam-Wah, and Frederick W Tse, and Amy Tse
November 2021, Cell reports,
Andy K Lee, and Valerie Yeung-Yam-Wah, and Frederick W Tse, and Amy Tse
July 2019, American journal of physiology. Endocrinology and metabolism,
Copied contents to your clipboard!