Biochemical characterization and regulation of cardiolipin synthase in Saccharomyces cerevisiae. 1990

K T Tamai, and M L Greenberg
Department of Biological Chemistry, University of Michigan, Ann Arbor 48709-0606.

Cardiolipin (CL) synthase activity was characterized in mitochondrial extracts of the yeast Saccharomyces cerevisiae and was shown for the first time to utilize CDP-diacylglycerol as a substrate. CL synthase exhibited a pH optimum of 9.0. Maximal activity was obtained in the presence of 20 mM magnesium with a Triton X-100: phospholipid ratio of 1:1. The apparent Km values for phosphatidylglycerol and CDP-diacylglycerol were 1 mM and 36 microM, respectively. CL synthase activity was maximal at 45 degrees C and heat inactivation studies showed that the enzyme retained greater than 75% of its activity at temperatures up to 55 degrees C. To study the regulation of CL synthase, the enzyme was assayed in cells grown under conditions known to affect general phospholipid synthesis. Unlike many phospholipid biosynthetic enzymes including PGP synthase, which catalyzes the initial step in CL biosynthesis, CL synthase was not repressed in cells grown in the presence of the phospholipid precursor inositol. Detailed procedures for the enzymatic synthesis of 32P-labelled substrates are described.

UI MeSH Term Description Entries
D007294 Inositol An isomer of glucose that has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1379) Inositol phospholipids are important in signal transduction. Myoinositol,Chiro-Inositol,Mesoinositol,Chiro Inositol
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010715 Phosphatidylglycerols A nitrogen-free class of lipids present in animal and particularly plant tissues and composed of one mole of glycerol and 1 or 2 moles of phosphatidic acid. Members of this group differ from one another in the nature of the fatty acids released on hydrolysis. Glycerol Phosphoglycerides,Monophosphatidylglycerols,Phosphatidylglycerol,Phosphatidyl Glycerol,Glycerol, Phosphatidyl,Phosphoglycerides, Glycerol
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D003567 Cytidine Diphosphate Diglycerides The ester of diacylglycerol with the terminal phosphate of cytidine diphosphate. It serves as an intermediate in the biosynthesis of phosphatidylethanolamine and phosphatidylserine in bacteria. CDP Diacylglycerols,CDP Diglycerides,Cytidine Diphosphodiacylglycerols,CDP-Diacylglycerol,CDP Diacylglycerol,Diacylglycerols, CDP,Diglycerides, CDP,Diglycerides, Cytidine Diphosphate,Diphosphate Diglycerides, Cytidine,Diphosphodiacylglycerols, Cytidine
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme

Related Publications

K T Tamai, and M L Greenberg
March 2006, Yeast (Chichester, England),
K T Tamai, and M L Greenberg
June 1998, The Journal of biological chemistry,
K T Tamai, and M L Greenberg
August 1985, Biochemical and biophysical research communications,
K T Tamai, and M L Greenberg
May 1998, The Journal of biological chemistry,
K T Tamai, and M L Greenberg
January 1975, Antonie van Leeuwenhoek,
K T Tamai, and M L Greenberg
September 1985, Journal of bacteriology,
K T Tamai, and M L Greenberg
November 1987, Molecular and cellular biology,
K T Tamai, and M L Greenberg
September 1990, Biochimica et biophysica acta,
Copied contents to your clipboard!