Control of calcium channels in neuroblastoma cells (N1E-115). 1990

P K Pang, and R Wang, and L Y Wu, and E Karpinski, and J Shan, and C G Benishin
Department of Physiology, University of Alberta, Edmonton, Canada.

Neuroblastoma cells (N1E-115) were used as models of transient (T) and long-lasting (L) Ca++ channels. The whole cell version of the patch clamp technique was used to measure inward Ca++ currents, and the fluorescent indicator, Fura-2, was used to measure changes in intracellular Ca++. Cells were cultured and selected during recording so that predominantly T or L channel currents were measured. T channel currents did not respond to dihydropyridine or parathyroid hormone, whereas L channel currents did. BAY-K-8644 increased and nifedipine decreased L channel currents. After a 15 mM KCl challenge, cells with predominantly T channels responded with a transient change in intracellular Ca++, while cells with predominantly L channels showed a sustained response. PTH inhibited the increase in intracellular Ca++ in cells with L channels, but not in those with T channels. PTH may be an example of an endogenous calcium channel blocker, at least in neuroblastoma cells.

UI MeSH Term Description Entries
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D010281 Parathyroid Hormone A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates. Natpara,PTH (1-84),PTH(1-34),Parathormone,Parathyrin,Parathyroid Hormone (1-34),Parathyroid Hormone (1-84),Parathyroid Hormone Peptide (1-34),Hormone, Parathyroid
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004095 Dihydropyridines Pyridine moieties which are partially saturated by the addition of two hydrogen atoms in any position.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

P K Pang, and R Wang, and L Y Wu, and E Karpinski, and J Shan, and C G Benishin
January 1991, Neurotoxicology,
P K Pang, and R Wang, and L Y Wu, and E Karpinski, and J Shan, and C G Benishin
October 1995, The American journal of physiology,
P K Pang, and R Wang, and L Y Wu, and E Karpinski, and J Shan, and C G Benishin
August 1990, Brain research. Developmental brain research,
P K Pang, and R Wang, and L Y Wu, and E Karpinski, and J Shan, and C G Benishin
July 1976, Biochemical pharmacology,
P K Pang, and R Wang, and L Y Wu, and E Karpinski, and J Shan, and C G Benishin
December 1992, Pflugers Archiv : European journal of physiology,
P K Pang, and R Wang, and L Y Wu, and E Karpinski, and J Shan, and C G Benishin
September 2009, Journal of molecular neuroscience : MN,
P K Pang, and R Wang, and L Y Wu, and E Karpinski, and J Shan, and C G Benishin
May 1986, Acta physiologica Scandinavica,
P K Pang, and R Wang, and L Y Wu, and E Karpinski, and J Shan, and C G Benishin
February 1987, Pharmacology & toxicology,
P K Pang, and R Wang, and L Y Wu, and E Karpinski, and J Shan, and C G Benishin
July 2006, Experimental cell research,
P K Pang, and R Wang, and L Y Wu, and E Karpinski, and J Shan, and C G Benishin
January 1989, Tissue & cell,
Copied contents to your clipboard!