Fluoride activates diradylglycerol and superoxide generation in human neutrophils via PLD/PA phosphohydrolase-dependent and -independent pathways. 1990

S C Olson, and S R Tyagi, and J D Lambeth
Department of Biochemistry, Emory University Medical School, Atlanta, GA 30322.

In contrast to the rapid, ethanol-inhibited superoxide generation by the receptor-linked agonist formyl-methionyl-leucyl-phenylalanine (fMLP), fluoride-activated superoxide generation occurs after a prolonged lag, and as shown herein is relatively ethanol-insensitive. We have investigated fluoride-activation of diradylglycerol generation and phospholipase D activity. Fluoride induces a very large increase in diradylglycerol mass (both 1,2-diacylglycerol (DAG) and 1-O-alkyl,2-acylglycerol (EAG)), with kinetics similar to superoxide generation. Unlike fMLP-activated diglyceride generation which is completely inhibited by ethanol, that produced by fluoride is only partially (30%) blocked. When the phosphatidylcholine pool is 3H-prelabeled, fluoride activates both [3H]phosphatidic acid (PA) and [3H]diglyceride generation with similar kinetics. Partial inhibition of the production of these species by ethanol was seen, coincident with the appearance of [3H]phosphatidylethanol, indicating phospholipase D-dependent transphosphatidylation had occurred. The data are consistent with the fluoride activation of PA and diglyceride generation by both phospholipase D-dependent and -independent (presumably phospholipase C) mechanisms.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010711 Phosphatidate Phosphatase A phosphomonoesterase involved in the synthesis of triacylglycerols. It catalyzes the hydrolysis of phosphatidates with the formation of diacylglycerols and orthophosphate. EC 3.1.3.4. Phosphatidate Phosphohydrolase,Phosphatidic Acid Phosphatase,Phosphatidic Acid Phosphohydrolase,Phosphatase, Phosphatidate,Phosphatase, Phosphatidic Acid,Phosphohydrolase, Phosphatidate,Phosphohydrolase, Phosphatidic Acid
D010712 Phosphatidic Acids Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups. Ammonium Phosphatidate,Diacylglycerophosphates,Phosphatidic Acid,Acid, Phosphatidic,Acids, Phosphatidic,Phosphatidate, Ammonium
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D010739 Phospholipase D An enzyme found mostly in plant tissue. It hydrolyzes glycerophosphatidates with the formation of a phosphatidic acid and a nitrogenous base such as choline. This enzyme also catalyzes transphosphatidylation reactions. EC 3.1.4.4. Lecithinase D,Phosphatidylcholine Phosphohydrolase
D004075 Diglycerides Glycerides composed of two fatty acids esterified to the trihydric alcohol GLYCEROL. There are two possible forms that exist: 1,2-diacylglycerols and 1,3-diacylglycerols. Diacylglycerol,Diacylglycerols
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D012969 Sodium Fluoride A source of inorganic fluoride which is used topically to prevent dental caries. Fluoristat,Ossin,Zymafluor,Fluoride, Sodium,Fluorides, Sodium,Fluoristats,Ossins,Sodium Fluorides,Zymafluors

Related Publications

S C Olson, and S R Tyagi, and J D Lambeth
July 2006, Cellular immunology,
S C Olson, and S R Tyagi, and J D Lambeth
December 2014, Free radical research,
S C Olson, and S R Tyagi, and J D Lambeth
August 1994, Biochemical and biophysical research communications,
S C Olson, and S R Tyagi, and J D Lambeth
May 1988, The Journal of allergy and clinical immunology,
S C Olson, and S R Tyagi, and J D Lambeth
May 2002, Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology,
S C Olson, and S R Tyagi, and J D Lambeth
February 2009, Proceedings of the National Academy of Sciences of the United States of America,
S C Olson, and S R Tyagi, and J D Lambeth
January 2006, Antioxidants & redox signaling,
S C Olson, and S R Tyagi, and J D Lambeth
September 1987, The Biochemical journal,
S C Olson, and S R Tyagi, and J D Lambeth
January 1998, Cell biology international,
Copied contents to your clipboard!