Localization of P elements, copy number regulation, and cytotype determination in Drosophila melanogaster. 1990

C Biémont, and S Ronsseray, and D Anxolabéhère, and H Izaabel, and C Gautier
Biometry-Genetics and Population Biology Laboratory, University Claude-Bernard, Lyon 1, Villeurbanne, France.

Seventeen highly-inbred lines of Drosophila melanogaster extracted from an M' strain (in the P/M system of hybrid dysgenesis) were studied for their cytotype and the number and chromosomal location of complete and defective P elements. While most lines were of M cytotype, three presented a P cytotype (the condition that represses P-element activity) and one was intermediate between M and P. All lines were found to possess KP elements and only eight to bear full-sized P elements. Only the lines with full-sized P elements showed detectable changes in their P-insertion pattern over generations; their rates of gain and of loss of P-element sites were equal to 0.12 and 0.09 per genome, per generation, respectively. There was no correlation between these two rates within lines, suggesting independent transpositions and excisions in the inbred genomes. The results of both Southern blot analysis and in situ hybridization of probes made from left and right sides of the P element strongly suggested the presence of a putative complete P element in region 1A of the X chromosome in the three lines with a P cytotype; the absence of P copy in this 1A region in lines with an M cytotype, favours the hypothesis that the P element inserted in 1A could play a major role in the P-cytotype determination. Insertion of a defective 2 kb P element was also observed in region 93F in 9 of the 13 M lines. The regulation of the P-element copy number in our lines appeared not to be associated with the ratio of full-length and defective P elements.

UI MeSH Term Description Entries
D008297 Male Males
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot

Related Publications

C Biémont, and S Ronsseray, and D Anxolabéhère, and H Izaabel, and C Gautier
December 2009, Genetics research,
C Biémont, and S Ronsseray, and D Anxolabéhère, and H Izaabel, and C Gautier
August 2007, Genetics,
C Biémont, and S Ronsseray, and D Anxolabéhère, and H Izaabel, and C Gautier
August 2008, Genetics,
C Biémont, and S Ronsseray, and D Anxolabéhère, and H Izaabel, and C Gautier
December 2002, Genetics,
C Biémont, and S Ronsseray, and D Anxolabéhère, and H Izaabel, and C Gautier
December 1989, Genetics,
C Biémont, and S Ronsseray, and D Anxolabéhère, and H Izaabel, and C Gautier
October 2004, Molecular genetics and genomics : MGG,
C Biémont, and S Ronsseray, and D Anxolabéhère, and H Izaabel, and C Gautier
October 2009, Genetics research,
C Biémont, and S Ronsseray, and D Anxolabéhère, and H Izaabel, and C Gautier
September 1989, Chromosoma,
C Biémont, and S Ronsseray, and D Anxolabéhère, and H Izaabel, and C Gautier
December 2012, Genetics research,
C Biémont, and S Ronsseray, and D Anxolabéhère, and H Izaabel, and C Gautier
January 2004, Genetics,
Copied contents to your clipboard!