Elastic moduli of living epithelial pancreatic cancer cells and their skeletonized keratin intermediate filament network. 2011

Nadine Walter, and Tobias Busch, and Thomas Seufferlein, and Joachim P Spatz
Max Planck Institute for Intelligent Systems, Heisenbergstr.3, D-70569 Stuttgart, Germany.

In simple epithelia, such as living epithelial pancreatic cancer cells (Panc-1), unusual amounts of keratin filaments can be found, which makes these cells an ideal model system to study the role of keratin for cell mechanical properties. In this work, the elastic moduli of Panc-1 cells and their extracted in-situ subcellular keratin intermediate filament network are determined and compared with each other. For this, the living adherent cells and their extracted keratin network were probed with local quasistatic indentation testing during large deformations using the Atomic Force Microscope (AFM). We determined the elastic modulus of the skeletonized but structurally intact keratin network to be in the order of 10 Pa, while the living cell elastic modulus ranged from 100 to 500 Pa. By removing microfilaments, microtubules, membranes and soluble cytoplasmic components during keratin network extraction, we excluded effects caused by crosslinking with other filamentous fibers and from the viscosity of the cytoplasm. Thus, the determined elastic modulus equals the actual elastic modulus inherent to such a keratin filamentous network. In our assessment of the effective mechanical contribution of the architecturally intact, skeletonized keratin network to living cell mechanics, we come to the conclusion that it plays only a very limited role. Evidently, the quantitative dominance of keratin in these cells does not reflect a strong influence on determining the cell's elastic modulus. Instead, keratin like other filamentous structures in the cell's scaffolding, e.g., F-actin and microtubuli, is one part of a greater whole.

UI MeSH Term Description Entries
D007382 Intermediate Filaments Cytoplasmic filaments intermediate in diameter (about 10 nanometers) between the microfilaments and the microtubules. They may be composed of any of a number of different proteins and form a ring around the cell nucleus. Tonofilaments,Neurofilaments,Filament, Intermediate,Filaments, Intermediate,Intermediate Filament,Neurofilament,Tonofilament
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D048430 Cell Shape The quality of surface form or outline of CELLS. Cell Shapes,Shape, Cell,Shapes, Cell
D055119 Elastic Modulus Numerical expression indicating the measure of stiffness in a material. It is defined by the ratio of stress in a unit area of substance to the resulting deformation (strain). This allows the behavior of a material under load (such as bone) to be calculated. Young Modulus,Modulus of Elasticity,Young's Modulus,Elasticity Modulus,Modulus, Elastic,Modulus, Young,Modulus, Young's,Youngs Modulus
D018625 Microscopy, Atomic Force A type of scanning probe microscopy in which a probe systematically rides across the surface of a sample being scanned in a raster pattern. The vertical position is recorded as a spring attached to the probe rises and falls in response to peaks and valleys on the surface. These deflections produce a topographic map of the sample. Atomic Force Microscopy,Force Microscopy,Scanning Force Microscopy,Atomic Force Microscopies,Force Microscopies,Force Microscopies, Scanning,Force Microscopy, Scanning,Microscopies, Atomic Force,Microscopies, Force,Microscopies, Scanning Force,Microscopy, Force,Microscopy, Scanning Force,Scanning Force Microscopies

Related Publications

Nadine Walter, and Tobias Busch, and Thomas Seufferlein, and Joachim P Spatz
April 1991, Cell biology international reports,
Nadine Walter, and Tobias Busch, and Thomas Seufferlein, and Joachim P Spatz
January 1982, The EMBO journal,
Nadine Walter, and Tobias Busch, and Thomas Seufferlein, and Joachim P Spatz
May 2004, Molecular biology of the cell,
Nadine Walter, and Tobias Busch, and Thomas Seufferlein, and Joachim P Spatz
January 1982, The EMBO journal,
Nadine Walter, and Tobias Busch, and Thomas Seufferlein, and Joachim P Spatz
March 1987, The Journal of general virology,
Nadine Walter, and Tobias Busch, and Thomas Seufferlein, and Joachim P Spatz
January 2015, PloS one,
Nadine Walter, and Tobias Busch, and Thomas Seufferlein, and Joachim P Spatz
July 2011, Experimental dermatology,
Nadine Walter, and Tobias Busch, and Thomas Seufferlein, and Joachim P Spatz
April 2001, The Journal of cell biology,
Nadine Walter, and Tobias Busch, and Thomas Seufferlein, and Joachim P Spatz
March 1987, Biochimica et biophysica acta,
Nadine Walter, and Tobias Busch, and Thomas Seufferlein, and Joachim P Spatz
August 1999, Experimental dermatology,
Copied contents to your clipboard!