Differential benzodiazepine pharmacology of mammalian recombinant GABAA receptors. 1990

G von Blankenfeld, and S Ymer, and D B Pritchett, and H Sontheimer, and M Ewert, and P H Seeburg, and H Kettenmann
Department of Neurobiology, University of Heidelberg, F.R.G.

We compared gamma-aminobutyric acid (GABA)-activated currents and their modulation by benzodiazepines in cultured human cells transfected with complementary desoxyribonucleic acid (cDNA) encoding different GABAA receptor subunits. Flunitrazepam, a benzodiazepine agonist which potentiates GABA responses in both neurons and astrocytes was only effective in receptors containing the gamma 2 subunit (alpha 1 beta 1 gamma 2 and alpha 5 beta 1 gamma 2). The beta-carboline methyl-4-ethyl-6,7-dimethoxy-beta-carboline-3-carboxylate (DMCM) decreased GABA-activated currents in receptors composed of alpha 1 beta 1 gamma 1 and alpha 1 beta 1 gamma 2 subunits but increased GABA-activated currents in receptors containing the alpha 5 subunit (alpha 5 beta 1 gamma 1 and alpha 5 beta 1 gamma 2). These results strongly suggest that flunitrazepam and DMCM do not act on isosteric sites and that differences in the responsiveness of GABAA receptors to these compounds are based on different subunit compositions of GABAA receptors.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002243 Carbolines A group of pyrido-indole compounds. Included are any points of fusion of pyridine with the five-membered ring of indole and any derivatives of these compounds. These are similar to CARBAZOLES which are benzo-indoles. Carboline,Pyrido(4,3-b)Indole,Beta-Carbolines,Pyrido(4,3-b)Indoles,Beta Carbolines
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005445 Flunitrazepam A benzodiazepine with pharmacologic actions similar to those of DIAZEPAM that can cause ANTEROGRADE AMNESIA. Some reports indicate that it is used as a date rape drug and suggest that it may precipitate violent behavior. The United States Government has banned the importation of this drug. Fluridrazepam,Rohypnol,Fluni 1A Pharma,Flunibeta,Flunimerck,Fluninoc,Flunitrazepam-Neuraxpharm,Flunitrazepam-Ratiopharm,Flunitrazepam-Teva,Flunizep Von Ct,Narcozep,RO-5-4200,Rohipnol,Flunitrazepam Neuraxpharm,Flunitrazepam Ratiopharm,Flunitrazepam Teva,RO54200,Von Ct, Flunizep
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

G von Blankenfeld, and S Ymer, and D B Pritchett, and H Sontheimer, and M Ewert, and P H Seeburg, and H Kettenmann
January 1995, Advances in biochemical psychopharmacology,
G von Blankenfeld, and S Ymer, and D B Pritchett, and H Sontheimer, and M Ewert, and P H Seeburg, and H Kettenmann
September 2013, British journal of pharmacology,
G von Blankenfeld, and S Ymer, and D B Pritchett, and H Sontheimer, and M Ewert, and P H Seeburg, and H Kettenmann
July 1993, European journal of pharmacology,
G von Blankenfeld, and S Ymer, and D B Pritchett, and H Sontheimer, and M Ewert, and P H Seeburg, and H Kettenmann
October 1989, Trends in pharmacological sciences,
G von Blankenfeld, and S Ymer, and D B Pritchett, and H Sontheimer, and M Ewert, and P H Seeburg, and H Kettenmann
February 1991, Biochemical Society transactions,
G von Blankenfeld, and S Ymer, and D B Pritchett, and H Sontheimer, and M Ewert, and P H Seeburg, and H Kettenmann
March 2020, Brain sciences,
G von Blankenfeld, and S Ymer, and D B Pritchett, and H Sontheimer, and M Ewert, and P H Seeburg, and H Kettenmann
February 1994, Brain research,
G von Blankenfeld, and S Ymer, and D B Pritchett, and H Sontheimer, and M Ewert, and P H Seeburg, and H Kettenmann
January 1986, Farmakologiia i toksikologiia,
G von Blankenfeld, and S Ymer, and D B Pritchett, and H Sontheimer, and M Ewert, and P H Seeburg, and H Kettenmann
October 1991, Brain research. Molecular brain research,
G von Blankenfeld, and S Ymer, and D B Pritchett, and H Sontheimer, and M Ewert, and P H Seeburg, and H Kettenmann
December 1994, Journal of neurochemistry,
Copied contents to your clipboard!