Subtypes of voltage-sensitive calcium channels in cultured rat brain neurons. 1990

N Martin-Moutot, and M Seagar, and F Couraud
Laboratoire de Biochimie, INSERM U 172, CNRS URA 1179, Faculté de Médecine Nord, Marseilles, France.

Subtypes of voltage-sensitive calcium channels have been investigated in cultured rat brain neurons using two classes of specific probes, dihydropyridine compounds and omega-conotoxin. Membranes prepared from cultured neurons contain specific binding sites for [3H]PN200-110, a dihydropyridine antagonist, and for 125I-omega-conotoxin with a stoichiometry of about 1:1. A depolarization induced 45Ca2+ influx into intact brain neurons was partially inhibited by a dihydropyridine antagonist, nifedipine and stimulated by a dihydropyridine agonist, Bay K8644. This dihydropyridine sensitive 45Ca2+ flux was insensitive to omega-conotoxin at concentrations which saturate the specific toxin binding sites indicating that in cultured brain neurons, dihydropyridine-sensitive calcium channels are not sensitive to omega-conotoxin.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010069 Oxadiazoles Compounds containing five-membered heteroaromatic rings containing two carbons, two nitrogens, and one oxygen atom which exist in various regioisomeric forms. Oxadiazole
D010456 Peptides, Cyclic Peptides whose amino acid residues are linked together forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS; some are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL). Circular Peptide,Cyclic Peptide,Cyclic Peptides,Cyclopeptide,Orbitide,Circular Peptides,Cyclopeptides,Orbitides,Peptide, Circular,Peptide, Cyclic,Peptides, Circular
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D017275 Isradipine A potent antagonist of CALCIUM CHANNELS that is highly selective for VASCULAR SMOOTH MUSCLE. It is effective in the treatment of chronic stable angina pectoris, hypertension, and congestive cardiac failure. Dynacirc,Isradipine, (+-)-Isomer,Isradipine, (R)-Isomer,Isradipine, (S)-Isomer,Lomir,PN 200-110,PN 205-033,PN 205-034,PN-200-110,PN-205-033,PN-205-034,PN 205 033,PN 205 034,PN 205033,PN 205034,PN205033,PN205034
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

N Martin-Moutot, and M Seagar, and F Couraud
November 1993, Neuropharmacology,
N Martin-Moutot, and M Seagar, and F Couraud
December 1994, Annals of the New York Academy of Sciences,
N Martin-Moutot, and M Seagar, and F Couraud
March 2004, Acta pharmacologica Sinica,
N Martin-Moutot, and M Seagar, and F Couraud
August 1986, Journal of neurophysiology,
N Martin-Moutot, and M Seagar, and F Couraud
January 1984, Biophysical journal,
N Martin-Moutot, and M Seagar, and F Couraud
July 1984, Proceedings of the National Academy of Sciences of the United States of America,
N Martin-Moutot, and M Seagar, and F Couraud
October 1996, Journal of neurophysiology,
Copied contents to your clipboard!