Anticonvulsant steroids and the GABA/benzodiazepine receptor-chloride ionophore complex. 1990

D Belelli, and N C Lan, and K W Gee
Division of Biological Sciences, School of Pharmacy, University of Southern California, Los Angeles 90033.

The ability of steroids to influence brain excitability is well documented. Certain 3 alpha-hydroxylated pregnanes are known to possess anticonvulsant and sedative-hypnotic/anesthetic properties. It has been observed that the seizure susceptibility in menstruating women with catamenial epilepsy appears to be correlated with changes in ovarian steroid levels. However, the underlying mechanism of these steroid influences on brain activity has only been recently revealed by pharmacological studies. These studies have provided compelling evidence for the presence of a novel steroid recognition site on the GABAA-benzodiazepine receptor complex (GBRC). Steroids may interact with this site with high affinity and stereospecificity to enhance chloride channel conductance in a manner similar to that produced by benzodiazepines (BZs) or barbiturates. The existence of such a steroid site on the GBRC is further supported by recent experiments involving the transfection of GABAA receptor cDNAs into a human embryonic kidney cell line. Based on the knowledge of the structure-activity requirements for the interaction of steroids with this novel recognition site, it is conceivable that the development of new anticonvulsant steroids with high therapeutic indices can be achieved.

UI MeSH Term Description Entries
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000927 Anticonvulsants Drugs used to prevent SEIZURES or reduce their severity. Anticonvulsant,Anticonvulsant Drug,Anticonvulsive Agent,Anticonvulsive Drug,Antiepileptic,Antiepileptic Agent,Antiepileptic Agents,Antiepileptic Drug,Anticonvulsant Drugs,Anticonvulsive Agents,Anticonvulsive Drugs,Antiepileptic Drugs,Antiepileptics,Agent, Anticonvulsive,Agent, Antiepileptic,Agents, Anticonvulsive,Agents, Antiepileptic,Drug, Anticonvulsant,Drug, Anticonvulsive,Drug, Antiepileptic,Drugs, Anticonvulsant,Drugs, Anticonvulsive,Drugs, Antiepileptic
D013256 Steroids A group of polycyclic compounds closely related biochemically to TERPENES. They include cholesterol, numerous hormones, precursors of certain vitamins, bile acids, alcohols (STEROLS), and certain natural drugs and poisons. Steroids have a common nucleus, a fused, reduced 17-carbon atom ring system, cyclopentanoperhydrophenanthrene. Most steroids also have two methyl groups and an aliphatic side-chain attached to the nucleus. (From Hawley's Condensed Chemical Dictionary, 11th ed) Steroid,Catatoxic Steroids,Steroids, Catatoxic

Related Publications

D Belelli, and N C Lan, and K W Gee
January 1987, Progress in neuro-psychopharmacology & biological psychiatry,
D Belelli, and N C Lan, and K W Gee
May 1989, Experientia,
D Belelli, and N C Lan, and K W Gee
December 1983, Neuropharmacology,
D Belelli, and N C Lan, and K W Gee
January 1987, Advances in experimental medicine and biology,
D Belelli, and N C Lan, and K W Gee
March 1981, Biological psychiatry,
D Belelli, and N C Lan, and K W Gee
January 1988, Advances in experimental medicine and biology,
D Belelli, and N C Lan, and K W Gee
January 1988, Molecular neurobiology,
D Belelli, and N C Lan, and K W Gee
January 1983, Advances in biochemical psychopharmacology,
Copied contents to your clipboard!