Phospholipid vesicles containing bovine heart mitochondrial cytochrome c oxidase and subunit III-deficient enzyme: analysis of respiratory control and proton translocating activities. 1990

K S Wilson, and L J Prochaska
Department of Biochemistry, School of Medicine, Wright State University, Dayton, Ohio 45435.

Phospholipid vesicles containing bovine heart mitochondrial cytochrome c oxidase (COV) or subunit III (Mr 29884)-deficient enzyme (COV-III) were characterized for electron transfer and proton translocating activities in order to investigate the relationship between the respiratory control ratio (RCR) and the apparent proton translocated to electron transferred stoichiometry (H+/e- ratio) in these preparations. We did not observe a quantitative correlation between the RCR value and the H+/e- ratio in the preparations. Significant deviation between these two parameters was observed in COV-III and also in COV. However, a new parameter, RCRval, did show a linear relationship with the H+/e- ratio of each preparation. Subunit III (SIII)-deficient cytochrome c oxidase isolated by either native gel electrophoresis or chymotrypsin treatment and incorporated into COV-III exhibited H+/e- ratios of 0.34 +/- 0.10, compared to 0.63 +/- 0.09 for COV, emphasizing that the 50% decrease of proton translocating activity is independent of the method of removal of SIII from the enzyme. COV and COV-III also showed similar rates of alkalinization of the extravesicular media after the initial proton translocation reaction (0.07-0.09 neq OH-/s), suggesting that these two preparations had similar endogenous proton permeabilities. In contrast, cytochrome c oxidase (COX) treated with Triton X-100 (3 mg/mg COX) and incorporated into phospholipid vesicles [COV (+TX)] exhibited slower rates of alkalinization (0.04 neq OH-/s), while having a H+/e- ratio similar to that of COV (0.66 +/- 0.10). The passive proton permeabilities of these preparations were tested by valinomycin-induced K+/H+ exchange activity. COV (+TX) and COV-III exhibited similar pseudo-first-order rate constants (10 peq OH-/s), while COV had a 20-fold higher rate constant. These results taken together suggest that the different preparations of COX-containing phospholipid vesicles have different biophysical properties. In addition, the decrease in proton-pumping activity observed in COV-III is due to removal of SIII from COX, suggesting that SIII may act either as a passive proton-conducting channel or as a regulator of COX conformation and/or functional activities.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

K S Wilson, and L J Prochaska
October 1978, Biochimica et biophysica acta,
K S Wilson, and L J Prochaska
December 2000, Journal of bioenergetics and biomembranes,
K S Wilson, and L J Prochaska
January 1979, Methods in enzymology,
K S Wilson, and L J Prochaska
January 1986, Methods in enzymology,
K S Wilson, and L J Prochaska
June 1977, Journal of bioenergetics and biomembranes,
K S Wilson, and L J Prochaska
February 1989, The Biochemical journal,
Copied contents to your clipboard!