Diverse roles of RNA polymerase II-associated factor 1 complex in different subpathways of nucleotide excision repair. 2011

Danielle Tatum, and Wentao Li, and Margaret Placer, and Shisheng Li
Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803.

Transcription-coupled repair (TCR) and global genomic repair (GGR) are two pathways of nucleotide excision repair (NER). In Saccharomyces cerevisiae, Rad26 is important but not absolutely required for TCR. Rpb4, a nonessential RNA polymerase II (Pol II) subunit that forms a subcomplex with Rpb7, and the Spt4-Spt5 complex, a transcription elongation factor, have been shown to suppress Rad26-independent TCR. The Pol II-associated factor 1 complex (Paf1C) has been shown to function in transcription elongation, 3'-processing of mRNAs, and posttranslational modification of histones. Here we show that Paf1C plays a marginal role in facilitating Rad26-dependent TCR but significantly suppresses Rad26-independent TCR. The suppression of Rad26-independent TCR is achieved by cooperating with Spt4-Spt5. We propose a model that, in the absence of Rad26, a lesion is "locked" in the active center of a Pol II elongation complex, which is stabilized by the coordinated interactions of Rpb4-Rpb7, Spt4-Spt5, and Paf1C with each other and with the core Pol II. We also found that Paf1C facilitates GGR, especially in internucleosomal linker regions. The facilitation of GGR is achieved through enabling monoubiquitination of histone H2B lysine 123 by Bre1, which in turn permits di- and trimethylation of histone H3 lysine 79 by Dot1. To our best knowledge, among the NER-modulating factors documented so far, Paf1C appears to have the most diverse functions in different NER pathways or subpathways.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011495 Histone-Lysine N-Methyltransferase An enzyme that catalyzes the methylation of the epsilon-amino group of lysine residues in proteins to yield epsilon mono-, di-, and trimethyllysine. Protein Lysine Methyltransferase,Protein Methylase III,Protein Methyltransferase III,Histone-Lysine Methyltransferase,Histone Lysine Methyltransferase,Histone Lysine N Methyltransferase,Methyltransferase, Histone-Lysine,Methyltransferase, Protein Lysine,N-Methyltransferase, Histone-Lysine
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D012319 RNA Polymerase II A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6. DNA-Dependent RNA Polymerase II,RNA Pol II,RNA Polymerase B,DNA Dependent RNA Polymerase II
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

Danielle Tatum, and Wentao Li, and Margaret Placer, and Shisheng Li
December 2002, Oncogene,
Danielle Tatum, and Wentao Li, and Margaret Placer, and Shisheng Li
June 1994, Molecular and cellular biology,
Danielle Tatum, and Wentao Li, and Margaret Placer, and Shisheng Li
April 2006, The FEBS journal,
Danielle Tatum, and Wentao Li, and Margaret Placer, and Shisheng Li
November 2007, Oncogene,
Danielle Tatum, and Wentao Li, and Margaret Placer, and Shisheng Li
September 1996, Mutation research,
Danielle Tatum, and Wentao Li, and Margaret Placer, and Shisheng Li
December 2015, Science (New York, N.Y.),
Danielle Tatum, and Wentao Li, and Margaret Placer, and Shisheng Li
April 2024, Environmental and molecular mutagenesis,
Danielle Tatum, and Wentao Li, and Margaret Placer, and Shisheng Li
February 2001, Molecular & general genetics : MGG,
Danielle Tatum, and Wentao Li, and Margaret Placer, and Shisheng Li
November 1997, Nucleic acids research,
Copied contents to your clipboard!