Cyclic AMP regulation of Gs protein. Thyrotropin and forskolin increase the quantity of stimulatory guanine nucleotide-binding proteins in cultured thyroid follicles. 1990

B Saunier, and K Dib, and B Delemer, and C Jacquemin, and C Corrèze
Unité de Recherche sur la Glande Thyroïde et la Régulation Hormonale, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Le Kremlin-Bicêtre, France.

This study was carried out to clarify the way in which thyrotropin (TSH) and forskolin regulate the adenylylcyclase complex in thyroid follicle cells. We examined the effects of chronic treatment of pig thyroid follicles with TSH or forskolin on the state of G proteins by (a) assaying adenylylcyclase activity, (b) analyzing the ADP-ribosylation of stimulatory G protein (Gs) by cholera toxin, and (c) quantifying the Gs subunits by Western blotting with antipeptide antibodies. Chronic exposure (18 h) of thyroid follicles to a low concentration of TSH (0.01-0.1 milliunit/ml) enhanced the subsequent response of adenylylcyclase to TSH. Higher concentration of TSH (1 milliunit/ml) induced a homologous desensitization of this response. In cells pretreated with forskolin, the TSH-stimulated adenylylcyclase activity was higher than in control cells. The forskolin-or guanosine 5'-(beta, gamma-imido) triphosphate (Gpp(NH)p)-stimulated adenylylcyclase activity was always significantly increased after chronic treatment of cells with TSH or forskolin. Treatment of cultured thyroid follicle membranes with [32P]NAD and cholera toxin resulted in labeling of the Gs alpha (45-52-kDa) component. Culturing follicles with TSH (0.001-1 milliunit/ml) or forskolin (0.01-10 microM) greatly affected the cholera toxin-mediated ADP-ribosylation of the Gs alpha subunit. Gs alpha labeling increased progressively to level off at 1 milliunit/ml TSH or 1 microM forskolin (150-200%). Gs alpha immunoreactivity was increased in parallel (200-300%). The immunoreactivity of G beta subunits in cells cultured with TSH or forskolin was also increased compared with control cells. Cycloheximide abolished the effects of TSH and forskolin on the follicles, suggesting that new protein synthesis is required. These results indicate that Gs protein subunits are up-regulated by TSH and forskolin and suggest that their synthesis in thyroid cells is mediated, at least in part, by a cyclic AMP-dependent mechanism.

UI MeSH Term Description Entries
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D006165 Guanylyl Imidodiphosphate A non-hydrolyzable analog of GTP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It binds tightly to G-protein in the presence of Mg2+. The nucleotide is a potent stimulator of ADENYLYL CYCLASES. GMP-PNP,GMP-P(NH)P,Gpp(NH)p,Guanosine 5'-(Beta,Gamma-Imido)Triphosphate,Guanyl-5'-Imidodiphosphate,P(NH)PPG,Guanyl 5' Imidodiphosphate,Imidodiphosphate, Guanylyl
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000246 Adenosine Diphosphate Ribose An ester formed between the aldehydic carbon of RIBOSE and the terminal phosphate of ADENOSINE DIPHOSPHATE. It is produced by the hydrolysis of nicotinamide-adenine dinucleotide (NAD) by a variety of enzymes, some of which transfer an ADP-ribosyl group to target proteins. ADP Ribose,Adenosine Diphosphoribose,ADP-Ribose,ADPribose,Adenosine 5'-Diphosphoribose,5'-Diphosphoribose, Adenosine,Adenosine 5' Diphosphoribose,Diphosphate Ribose, Adenosine,Diphosphoribose, Adenosine,Ribose, ADP,Ribose, Adenosine Diphosphate
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP

Related Publications

B Saunier, and K Dib, and B Delemer, and C Jacquemin, and C Corrèze
September 1989, Molecular and cellular endocrinology,
B Saunier, and K Dib, and B Delemer, and C Jacquemin, and C Corrèze
September 1989, The Biochemical journal,
B Saunier, and K Dib, and B Delemer, and C Jacquemin, and C Corrèze
February 1986, FEBS letters,
B Saunier, and K Dib, and B Delemer, and C Jacquemin, and C Corrèze
February 1985, Endocrinologia japonica,
B Saunier, and K Dib, and B Delemer, and C Jacquemin, and C Corrèze
February 1992, The Biochemical journal,
B Saunier, and K Dib, and B Delemer, and C Jacquemin, and C Corrèze
November 1992, Proceedings of the National Academy of Sciences of the United States of America,
B Saunier, and K Dib, and B Delemer, and C Jacquemin, and C Corrèze
November 1983, Nihon Naibunpi Gakkai zasshi,
Copied contents to your clipboard!