Ultrastructural distribution of NADPase within the Golgi apparatus and lysosomes of mammalian cells. 1990

C E Smith, and L Hermo, and A Fazel, and M F Lalli, and J J Bergeron
Department of Anatomy, McGill University, Montreal, Canada.

Cytochemical studies with over 40 different mammalian cell types have indicated that NADPase activity is associated with the Golgi apparatus and/or lysosomes of all cells. In the majority of cases, NADPase is restricted to saccular elements comprising the medial region of the Golgi stack and an occasional lysosome. There is often weak NADPase activity in other Golgi compartments such as the trans Golgi saccules and/or elements of the trans Golgi network. In some cells, however, strong NADPase activity is found within these latter compartments, either exclusively in trans Golgi saccules or elements of the trans Golgi network, or in combination with medial Golgi saccules and each other including (1) medial Golgi saccules + trans Golgi saccules, (2) medial Golgi saccules + trans Golgi saccules + trans Golgi network, or (3) trans Golgi saccules + trans Golgi network. In some rare cases, no NADPase activity is detectable in either Golgi saccules or elements of the trans Golgi network, but it is observed in an occasional lysosome or throughout the lysosomal system of these cells. It is unclear at present if these variations in the distribution of NADPase across the Golgi apparatus, and between the Golgi apparatus and lysosomal system, are due to differences in targeting mechanisms or to the existence of "bottlenecks" in the natural flow of NADPase along the biosynthetic pathway toward lysosomes. While no clear pattern in the association of strong NADPase activity with lysosomes was apparent relative to the ultrastructural distribution of NADPase activity in Golgi saccules or elements of the trans Golgi network, the results of this investigation suggested that cells having NADPase localized predominantly toward the trans aspect of the Golgi apparatus (in trans Golgi saccules or elements of the trans Golgi network or both) have few NADPase-positive lysosomes. The only exception is hepatocytes which were classified as predominantly trans but had noticeable NADPase activity within medial Golgi saccules and elements of the trans Golgi network as well, and highly reactive lysosomes. Other cells showing highly reactive lysosomes including (1) Kupffer cells of liver and those forming the proximal convoluted tubules of the kidney, both of which also had strong NADPase activity within medial and trans Golgi saccules and elements of the trans Golgi network, (2) Leydig cells of the testis and interstitial cells of the ovary, which also showed strong NADPase activity within medial Golgi saccules, and (3) macrophages from lung, spleen and testis, and Sertoli cells from the testis all of which showed no Golgi associated NADPase activity.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009708 Nucleotidases A class of enzymes that catalyze the conversion of a nucleotide and water to a nucleoside and orthophosphate. EC 3.1.3.-.
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C E Smith, and L Hermo, and A Fazel, and M F Lalli, and J J Bergeron
January 1964, Federation proceedings,
C E Smith, and L Hermo, and A Fazel, and M F Lalli, and J J Bergeron
August 1984, The Histochemical journal,
C E Smith, and L Hermo, and A Fazel, and M F Lalli, and J J Bergeron
January 1980, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
C E Smith, and L Hermo, and A Fazel, and M F Lalli, and J J Bergeron
May 1986, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
C E Smith, and L Hermo, and A Fazel, and M F Lalli, and J J Bergeron
September 1981, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
C E Smith, and L Hermo, and A Fazel, and M F Lalli, and J J Bergeron
June 1964, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
C E Smith, and L Hermo, and A Fazel, and M F Lalli, and J J Bergeron
July 2004, Journal of structural biology,
C E Smith, and L Hermo, and A Fazel, and M F Lalli, and J J Bergeron
November 1995, Trends in cell biology,
C E Smith, and L Hermo, and A Fazel, and M F Lalli, and J J Bergeron
August 2012, Current opinion in cell biology,
Copied contents to your clipboard!