Facilitation of memory retrieval by pretest morphine mediated by mu but not delta and kappa opioid receptors. 1990

Y Shiigi, and M Takahashi, and H Kaneto
Department of Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki University, Japan.

Mice were trained to avoid electric shock (0.6 mA) in a step-through type passive avoidance learning task, retention being measured 24 h after the training trial. Morphine 10 mg/kg administered 30 min before the test trial (pretest) facilitated memory retrieval, and the effect was completely antagonized by 1 mg/kg naloxone, a selective mu-opioid receptor antagonist. On the other hand, pretest administration of 0.01-10 mg/kg DTLET, a selective delta-opioid receptor agonist, did not produce the same effect as morphine. Nor-binaltorphimine, a kappa-opioid receptor antagonist, did not antagonize the effect of pretest morphine, at doses of 1 and 2 mg/kg. These results suggest that the facilitation of memory retrieval by pretest morphine is mediated through mu- but not delta- or kappa-opioid receptors.

UI MeSH Term Description Entries
D008297 Male Males
D008568 Memory Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D004597 Electroshock Induction of a stress reaction in experimental subjects by means of an electrical shock; applies to either convulsive or non-convulsive states. Electroconvulsive Shock,Electroconvulsive Shocks,Electroshocks,Shock, Electroconvulsive,Shocks, Electroconvulsive
D000700 Analgesics Compounds capable of relieving pain without the loss of CONSCIOUSNESS. Analgesic,Anodynes,Antinociceptive Agents,Analgesic Agents,Analgesic Drugs,Agents, Analgesic,Agents, Antinociceptive,Drugs, Analgesic

Related Publications

Y Shiigi, and M Takahashi, and H Kaneto
December 1995, Pharmacology, biochemistry, and behavior,
Y Shiigi, and M Takahashi, and H Kaneto
September 1999, European journal of pharmacology,
Y Shiigi, and M Takahashi, and H Kaneto
June 1991, Journal of neurochemistry,
Y Shiigi, and M Takahashi, and H Kaneto
August 1994, Neuroreport,
Y Shiigi, and M Takahashi, and H Kaneto
September 2000, Brain, behavior, and immunity,
Y Shiigi, and M Takahashi, and H Kaneto
June 1994, Nihon shinkei seishin yakurigaku zasshi = Japanese journal of psychopharmacology,
Y Shiigi, and M Takahashi, and H Kaneto
March 1993, European journal of pharmacology,
Y Shiigi, and M Takahashi, and H Kaneto
December 2021, Cellular and molecular life sciences : CMLS,
Copied contents to your clipboard!