Electron paramagnetic resonance spectroscopic characterization of dimethyl sulfoxide reductase of Escherichia coli. 1990

R Cammack, and J H Weiner
Department of Biochemistry, University of Alberta, Edmonton, Canada.

The electron transfer centers in dimethyl sulfoxide reductase were examined by EPR spectroscopy in membranes of the overproducing Escherichia coli strain HB101/pDMS159, and in purified enzyme. Iron-sulfur clusters of the [4Fe-4S] type and a molybdenum center were detected in the protein, which comprises three different subunits: DmsA, -B, and -C. The intensity of the reduced iron-sulfur clusters corresponded to 3.82 +/- 0.5 spins per molecule. The dithionite-reduced clusters were reoxidized by DMSO or TMAO. The enzyme, as prepared, showed a spectrum of Mo(V), which resembles the high-pH form of E. coli nitrate reductase. The Mo(V) detected by EPR was absent from a mutant which does not assemble the molybdenum cofactor. In these cases, the levels of EPR-detectable iron-sulfur clusters in the cells were increased. Extracts from HB101/pDMS159 enriched in DmsA showed more Mo(V) signals and considerably less iron-sulfur. These results are in agreement with predictions from amino acid sequence comparisons, that the molybdenum center is located in DmsA, while four iron-sulfur clusters are in DmsB. The midpoint potentials of the molybdenum and iron-sulfur clusters in the various preparations were determined by mediator titrations. The iron-sulfur signals could be best fitted by four clusters, with midpoint potentials spread between -50 and -330 mV. The midpoint potentials of the iron-sulfur clusters and Mo(V) species were pH dependent. In addition, all potentials became less negative in the presence of the detergent Triton X-100. Observation of relaxation enhancement of the Mo(V) species by the reduced [4Fe-4S] clusters indicated that the centers are in proximity within the protein.

UI MeSH Term Description Entries
D007506 Iron-Sulfur Proteins A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation. Iron-Sulfur Protein,Iron Sulfur Proteins,Iron Sulfur Protein,Protein, Iron-Sulfur,Proteins, Iron Sulfur,Proteins, Iron-Sulfur,Sulfur Proteins, Iron
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009565 Nitrate Reductases Oxidoreductases that are specific for the reduction of NITRATES. Reductases, Nitrate
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

R Cammack, and J H Weiner
March 1994, The Journal of biological chemistry,
R Cammack, and J H Weiner
June 1978, The Biochemical journal,
R Cammack, and J H Weiner
June 1985, Biochemical Society transactions,
R Cammack, and J H Weiner
June 1985, Journal of bacteriology,
R Cammack, and J H Weiner
November 1996, Microbiology (Reading, England),
R Cammack, and J H Weiner
October 1990, Journal of bacteriology,
Copied contents to your clipboard!