Hypoxic failure of synaptic transmission in the isolated spinal cord, and the effects of divalent cations. 1990

G Czéh, and G G Somjen
Division of Physiology, Duke University Medical Center, Durham, NC 27710.

Responses evoked by stimulation of a dorsal root were recorded from ventral and dorsal roots of isolated spinal cords of infant mice. Interstitial potassium, [K+]o, and extracellular DC voltage were recorded from dorsal gray matter in some experiments. When oxygen was withdrawn, synaptically transmitted discharges (dorsal horn response, DHR, and monosynaptic ventral root reflex, VRR) began to be depressed within a minute, and were depressed to less than 30% of control amplitude in 10-15 min. Responses recovered fully if oxygen was readmitted within 45 min, but no recovery was seen after 90 min of hypoxia. The degree of the depression of VRR was as expected from the depression of the electrotonically conducted excitatory postsynaptic potential (VRepsp). Responses failed much more rapidly in spinal cords of 15-16-day-old mice, than of 9-14-day-olds. When the spinal cord was bathed in elevated [Ca2+]o or in reduced [Mg2+]o, synaptic transmission was consistently maintained for a longer period of hypoxia than in bathing fluid of normal cation content. In a sizeable minority of the trials during hypoxia an abrupt increase of [K+]o occurred, accompanied by a sudden negative shift of extracellular potential, closely resembling spreading depression (SD) of forebrain structures. Delayed post-hypoxic spontaneous activity was seen in many spinal cords. The results are compatible with the hypothesis that hypoxic failure of synaptic transmission is due, in part or whole, to blockade of inward Ca2(+)-current in presynaptic terminals. Cells in spinal gray matter can no longer be regarded as 'immune' to SD-like depolarization, but the limited conditions under which SD can occur are not yet clear.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G Czéh, and G G Somjen
September 1979, The Journal of physiology,
G Czéh, and G G Somjen
August 1974, European journal of pharmacology,
G Czéh, and G G Somjen
November 1957, The Journal of pharmacology and experimental therapeutics,
G Czéh, and G G Somjen
February 1975, Neuropharmacology,
G Czéh, and G G Somjen
May 1947, Journal of neurophysiology,
G Czéh, and G G Somjen
June 1980, European journal of pharmacology,
G Czéh, and G G Somjen
May 1968, Science (New York, N.Y.),
Copied contents to your clipboard!