G418-resistance as a dominant marker and reporter for gene expression in Saccharomyces cerevisiae. 1990

C Hadfield, and B E Jordan, and R C Mount, and G H Pretorius, and E Burak
Leicester Biocentre, University of Leicester, England, UK.

Coding sequence cartridges for aminoglycoside phosphotransferase (APT) were isolated from bacterial transposon Tn903. When incorporated into a heterologous gene construction utilising the PGK1 promoter and terminator, the heterologous APT gene provided a G418-resistance determinant that functioned efficiently as a dominant marker for yeast in both multiple- and single-copy. Transformant colonies on selective medium appeared rapidly, within 36-48 h, and growth rate of the transformed cells was normal. A simple and highly sensitive radiolabelling assay for APT enzyme activity was developed for use with crude cell protein extracts. Enzyme activity units were equated to the amount of APT protein present in the cells, and the APT protein was shown to be stable in yeast. Heterologous APT expression was 130-fold reduced compared with homologous PGK1. This resulted from an estimated two-fold decrease in mRNA level and a 65-fold decrease in translation efficiency. The latter was unaffected by AUG sequence context change, but corresponded with a high frequency of minor codons in the APT-coding sequence. APT can be used as a semi-quantitative reporter of gene expression, whose useful features are in vivo detection via the G418-resistance phenotype and powerful cell-free assay.

UI MeSH Term Description Entries
D007613 Kanamycin Resistance Nonsusceptibility of bacteria to the antibiotic KANAMYCIN, which can bind to their 70S ribosomes and cause misreading of messenger RNA.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005799 Genes, Dominant Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state. Conditions, Dominant Genetic,Dominant Genetic Conditions,Genetic Conditions, Dominant,Condition, Dominant Genetic,Dominant Gene,Dominant Genes,Dominant Genetic Condition,Gene, Dominant,Genetic Condition, Dominant
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D005839 Gentamicins A complex of closely related aminoglycosides obtained from MICROMONOSPORA purpurea and related species. They are broad-spectrum antibiotics, but may cause ear and kidney damage. They act to inhibit PROTEIN BIOSYNTHESIS. Gentamicin Sulfate (USP),Gentamycin,G-Myticin,Garamycin,Gentacycol,Gentamicin,Gentamicin Sulfate,Gentamycins,Gentavet,Genticin,G Myticin,GMyticin,Sulfate, Gentamicin

Related Publications

C Hadfield, and B E Jordan, and R C Mount, and G H Pretorius, and E Burak
December 1999, Current genetics,
C Hadfield, and B E Jordan, and R C Mount, and G H Pretorius, and E Burak
November 1993, Plasmid,
C Hadfield, and B E Jordan, and R C Mount, and G H Pretorius, and E Burak
May 2016, Yeast (Chichester, England),
C Hadfield, and B E Jordan, and R C Mount, and G H Pretorius, and E Burak
January 1987, Gene,
C Hadfield, and B E Jordan, and R C Mount, and G H Pretorius, and E Burak
May 1987, Molecular & general genetics : MGG,
C Hadfield, and B E Jordan, and R C Mount, and G H Pretorius, and E Burak
August 1998, Archives of microbiology,
C Hadfield, and B E Jordan, and R C Mount, and G H Pretorius, and E Burak
June 1993, Biotechnology and applied biochemistry,
C Hadfield, and B E Jordan, and R C Mount, and G H Pretorius, and E Burak
October 1994, Yeast (Chichester, England),
C Hadfield, and B E Jordan, and R C Mount, and G H Pretorius, and E Burak
August 2019, FEMS yeast research,
C Hadfield, and B E Jordan, and R C Mount, and G H Pretorius, and E Burak
February 2013, FEMS yeast research,
Copied contents to your clipboard!