Engagement of I-branching {beta}-1, 6-N-acetylglucosaminyltransferase 2 in breast cancer metastasis and TGF-{beta} signaling. 2011

Haijun Zhang, and Fanyan Meng, and Sherwin Wu, and Bas Kreike, and Seema Sethi, and Wei Chen, and Fred R Miller, and Guojun Wu
The Breast Cancer Biology Program, Barbara Ann Karmanos Cancer Institute; Department of Oncology and Pathology, Wayne State University School of Medicine, HWCRC, Room 840.2, 4100 John R Street, Detroit, MI 48201, USA.

In this study, we have showed that GCNT2, a gene-encoding glucosaminyl (N-acetyl) transferase 2, I-branching enzyme, is overexpressed in highly metastatic breast cancer cell lines of human and mouse origin and basal-like breast tumor samples. GCNT2 expression is also significantly correlated to the metastatic phenotype in breast tumor samples. Functional studies showed that ectopic expression of GCNT2 enhances cell detachment, adhesion to endothelial cells, cell migration and invasion in vitro, and lung metastasis of breast cancer cells in vivo. Knockdown of GCNT2 expression decreases cell migration and invasion in vitro and lung metastasis in vivo. We have further shown the involvement of GCNT2 in the epithelial-to-mesenchymal transition (EMT). Specifically, the expression of E-cadherin is significantly changed upon GCNT2 expression at the protein level but not at the RNA level. Moreover, we have shown that GCNT2 is a direct target of the TGF-β-smad pathway and that change in GCNT2 expression modulates EMT induced by TGF-β1 treatment. Finally, we have shown that diminution of the glycosyltransferase activity of I-branching β-1, 6-N-acetylglucosaminyl transferase 2 (GCNT2) abrogates its cell migration and invasion-promoting function and synergistic effect with TGF-β to induce EMT. Our study for the first time showed that GCNT2 is a novel gene contributing to breast cancer metastasis with preferential expression in basal-like breast cancer. Moreover, we discovered that involvement of GCNT2 in EMT and TGF-β signaling, and further glycosylation modification of E-cadherin by GCNT2, are the underlying integrative mechanisms for breast cancer metastasis, implying that blocking TGF-β/GCNT2 signaling is a promising approach for targeting metastatic breast cancer.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D008325 Mammary Neoplasms, Experimental Experimentally induced mammary neoplasms in animals to provide a model for studying human BREAST NEOPLASMS. Experimental Mammary Neoplasms,Neoplasms, Experimental Mammary,Experimental Mammary Neoplasm,Mammary Neoplasm, Experimental,Neoplasm, Experimental Mammary
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D009361 Neoplasm Invasiveness Ability of neoplasms to infiltrate and actively destroy surrounding tissue. Invasiveness, Neoplasm,Neoplasm Invasion,Invasion, Neoplasm
D009362 Neoplasm Metastasis The transfer of a neoplasm from one organ or part of the body to another remote from the primary site. Metastase,Metastasis,Metastases, Neoplasm,Metastasis, Neoplasm,Neoplasm Metastases,Metastases
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog

Related Publications

Haijun Zhang, and Fanyan Meng, and Sherwin Wu, and Bas Kreike, and Seema Sethi, and Wei Chen, and Fred R Miller, and Guojun Wu
March 2016, Cancer science,
Haijun Zhang, and Fanyan Meng, and Sherwin Wu, and Bas Kreike, and Seema Sethi, and Wei Chen, and Fred R Miller, and Guojun Wu
June 1994, Carbohydrate research,
Haijun Zhang, and Fanyan Meng, and Sherwin Wu, and Bas Kreike, and Seema Sethi, and Wei Chen, and Fred R Miller, and Guojun Wu
June 1995, Glycobiology,
Haijun Zhang, and Fanyan Meng, and Sherwin Wu, and Bas Kreike, and Seema Sethi, and Wei Chen, and Fred R Miller, and Guojun Wu
November 2006, Annals of the New York Academy of Sciences,
Haijun Zhang, and Fanyan Meng, and Sherwin Wu, and Bas Kreike, and Seema Sethi, and Wei Chen, and Fred R Miller, and Guojun Wu
April 2008, Clinical calcium,
Haijun Zhang, and Fanyan Meng, and Sherwin Wu, and Bas Kreike, and Seema Sethi, and Wei Chen, and Fred R Miller, and Guojun Wu
April 2003, Blood,
Haijun Zhang, and Fanyan Meng, and Sherwin Wu, and Bas Kreike, and Seema Sethi, and Wei Chen, and Fred R Miller, and Guojun Wu
January 1995, Anticancer research,
Haijun Zhang, and Fanyan Meng, and Sherwin Wu, and Bas Kreike, and Seema Sethi, and Wei Chen, and Fred R Miller, and Guojun Wu
December 2001, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
Haijun Zhang, and Fanyan Meng, and Sherwin Wu, and Bas Kreike, and Seema Sethi, and Wei Chen, and Fred R Miller, and Guojun Wu
December 2002, Biochimica et biophysica acta,
Haijun Zhang, and Fanyan Meng, and Sherwin Wu, and Bas Kreike, and Seema Sethi, and Wei Chen, and Fred R Miller, and Guojun Wu
January 1999, The Journal of biological chemistry,
Copied contents to your clipboard!