Factors influencing the onset of ouabain inhibition of Na,K-ATPase from guinea-pig myocardium. 1990

F Ebner
Institut für Pharmakologie und Toxikologie, Technischen Universität, München, Federal Republic of Germany.

1. The onset of ouabain inhibition was quantified by analysis with an integrated rate equation from experiments in which the activity of Na,K-ATPase from guinea-pig myocardium had been altered with adenosine 5'-triphosphate (ATP, 0.3-9 mmoll-1) in the absence and presence of a detergent. 2. Under control conditions with increasing ouabain (0.1-100 mumoll-1) and ATP (0.3-1 mmoll-1) concentrations, inhibition developed faster. The acceleration by ouabain became less effective at saturating concentrations leading to a non-linear relationship between pseudo-first-order rate constants of inhibition and ouabain concentration. With a rise of ATP to 3 and 9 mmoll-1, i.e., near total Mg concentration (5 mmoll-1), inhibition was retarded presumably because the free concentrations of Mg and uncomplexed ATP changed. Varying the ATP concentration had little effect on ouabain potency at steady state; Hill coefficients were less than 1. 3. The detergent alamethicin (23 micrograms ml-1) neither interfered with Na,K-ATPase activity nor with inhibition at steady state but accelerated its onset. This supports a role for a lipid barrier in the development of inhibition. 4. While the reaction of low concentrations of ouabain with the receptors seemed to govern inhibition rate, with an increase in steroid concentration in the presence of alamethicin, ATP-dependent enzyme activity interfered with the onset of inhibition. The transition of the enzyme between ouabain-sensitive and ATP-hydrolytic conformations consequently causes the non-linear concentration-dependence of pseudo-first-order rate constants. As the Hill coefficient was less than 1, a reaction of ouabain with two receptors also could have contributed to the special concentration-dependence of inhibition rates.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000408 Alamethicin A cyclic nonadecapeptide antibiotic that can act as an ionophore and is produced by strains of Trichoderma viride. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
Copied contents to your clipboard!