Site-independent expression of the chicken beta A-globin gene in transgenic mice. 1990

M Reitman, and E Lee, and H Westphal, and G Felsenfeld
Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892.

The level of expression of exogenous genes carried by transgenic mice typically varies from mouse to mouse and can be quite low. This behaviour is attributed to the influence of the mouse chromatin near the site of transgene integration. This 'position effect' has been seen in transgenic mice carrying the human beta-globin gene. It was however, abolished when DNase I hypersensitive sites (normally found 65 to 44 kilobases (kb) upstream) were linked to the human beta-globin transgene. Thus, the upstream DNA (previously named a dominant control or locus activation region, now denoted a locus control region) conferred the ability to express human beta-globin at high levels dependent on copy number on every mouse carrying the construct. We report here an investigation of chicken beta A-globin gene expression in transgenic mice. A 4.5-kb fragment carrying the beta A-globin gene and its downstream enhancer, without any far upstream elements, is sufficient to ensure that every transgenic mouse expresses chicken globin messenger RNA at levels proportional to the transgene copy number. Thus the chicken DNA elements that allow position-independent expression can function in mice. In marked contrast to the human beta cluster, these elements are no farther than 2 kb from the gene. The location of the elements within the cluster demonstrates that position independence can be mediated by DNA that does not define a gene cluster boundary.

UI MeSH Term Description Entries
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004742 Enhancer Elements, Genetic Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter. Enhancer Elements,Enhancer Sequences,Element, Enhancer,Element, Genetic Enhancer,Elements, Enhancer,Elements, Genetic Enhancer,Enhancer Element,Enhancer Element, Genetic,Enhancer Sequence,Genetic Enhancer Element,Genetic Enhancer Elements,Sequence, Enhancer,Sequences, Enhancer
D005914 Globins A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure. Globin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Reitman, and E Lee, and H Westphal, and G Felsenfeld
December 1987, Cell,
M Reitman, and E Lee, and H Westphal, and G Felsenfeld
July 1994, Proceedings of the National Academy of Sciences of the United States of America,
M Reitman, and E Lee, and H Westphal, and G Felsenfeld
September 1989, Proceedings of the National Academy of Sciences of the United States of America,
M Reitman, and E Lee, and H Westphal, and G Felsenfeld
January 1987, Progress in clinical and biological research,
M Reitman, and E Lee, and H Westphal, and G Felsenfeld
October 1994, Nucleic acids research,
M Reitman, and E Lee, and H Westphal, and G Felsenfeld
January 1985, Nature,
M Reitman, and E Lee, and H Westphal, and G Felsenfeld
September 1994, Science in China. Series B, Chemistry, life sciences & earth sciences,
M Reitman, and E Lee, and H Westphal, and G Felsenfeld
August 1992, The Biochemical journal,
Copied contents to your clipboard!