Valproic acid selectively reduces the low-threshold (T) calcium current in rat nodose neurons. 1990

K M Kelly, and R A Gross, and R L Macdonald
Department of Neurology, University of Michigan Medical Center, Ann Arbor 48104.

Valproic acid (VPA) is an antiepileptic drug used in the treatment of a wide variety of human seizures including generalized absence (GA) (petit mal) seizures. The mechanism of action of VPA in controlling GA seizures is not known. We tested the effects of VPA on the Ca2+ current components of acutely dissociated rat nodose ganglion neurons. VPA reduced the low-threshold (T) Ca2+ current at clinically relevant concentrations but had no effect on the high-threshold (N and L) current components. The effect on T current was concentration-dependent and most apparent at peak current. There was little effect seen on late current. VPA did not affect the rate or voltage-dependency of T current activation. The selective reduction of T current may be a means by which VPA is effective in controlling GA seizures.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009620 Nodose Ganglion The inferior (caudal) ganglion of the vagus (10th cranial) nerve. The unipolar nodose ganglion cells are sensory cells with central projections to the medulla and peripheral processes traveling in various branches of the vagus nerve. Nodose Ganglia,Ganglia, Nodose,Ganglion, Nodose
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014635 Valproic Acid A fatty acid with anticonvulsant and anti-manic properties that is used in the treatment of EPILEPSY and BIPOLAR DISORDER. The mechanisms of its therapeutic actions are not well understood. It may act by increasing GAMMA-AMINOBUTYRIC ACID levels in the brain or by altering the properties of VOLTAGE-GATED SODIUM CHANNELS. Dipropyl Acetate,Divalproex,Sodium Valproate,2-Propylpentanoic Acid,Calcium Valproate,Convulsofin,Depakene,Depakine,Depakote,Divalproex Sodium,Ergenyl,Magnesium Valproate,Propylisopropylacetic Acid,Semisodium Valproate,Valproate,Valproate Calcium,Valproate Sodium,Valproic Acid, Sodium Salt (2:1),Vupral,2 Propylpentanoic Acid
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

K M Kelly, and R A Gross, and R L Macdonald
January 1991, The Journal of pharmacology and experimental therapeutics,
K M Kelly, and R A Gross, and R L Macdonald
April 1988, Science (New York, N.Y.),
K M Kelly, and R A Gross, and R L Macdonald
November 2001, The Journal of physiology,
K M Kelly, and R A Gross, and R L Macdonald
September 1991, Journal of neurophysiology,
K M Kelly, and R A Gross, and R L Macdonald
June 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K M Kelly, and R A Gross, and R L Macdonald
December 1985, Neuroscience letters,
K M Kelly, and R A Gross, and R L Macdonald
March 2004, Journal of neurophysiology,
K M Kelly, and R A Gross, and R L Macdonald
September 1989, Brain research,
K M Kelly, and R A Gross, and R L Macdonald
December 1993, Neuroscience letters,
K M Kelly, and R A Gross, and R L Macdonald
October 2003, Neuroscience research,
Copied contents to your clipboard!