Excitatory amino acid binding sites in the periaqueductal gray of the rat. 1990

R L Albin, and R L Makowiec, and Z Hollingsworth, and L S Dure, and J B Penney, and A B Young
Department of Neurology, University of Michigan, Ann Arbor.

We used receptor autoradiography to determine the distribution of excitatory amino acid (EAA) binding site subtypes in the periaqueductal gray (PAG) of the rat. N-Methyl-D-aspartate (NMDA), kainate, quisqualate-ionotropic, and quisqualate-metabotropic binding sites were all present in the PAG. Distribution was inhomogeneous with greatest density of all binding site subtypes in the dorsolateral subdivision and lowest density in the ventrolateral subdivision. Relative to regions of brain with high densities of EAA binding site subtypes, quisqualate-metabotropic binding sites had the highest relative density and NMDA binding sites the least. The presence of all subtypes of EAA binding sites in the PAG suggests that EAA action within the PAG is likely to be complex.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D010487 Periaqueductal Gray Central gray matter surrounding the CEREBRAL AQUEDUCT in the MESENCEPHALON. Physiologically it is probably involved in RAGE reactions, the LORDOSIS REFLEX; FEEDING responses, bladder tonus, and pain. Mesencephalic Central Gray,Midbrain Central Gray,Central Gray Substance of Midbrain,Central Periaqueductal Gray,Griseum Centrale,Griseum Centrale Mesencephali,Periaqueductal Gray Matter,Substantia Grisea Centralis,Substantia Grisea Centralis Mesencephali,Central Gray, Mesencephalic,Central Gray, Midbrain,Gray Matter, Periaqueductal,Gray, Central Periaqueductal,Griseum Centrale Mesencephalus,Periaqueductal Grays, Central
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D017459 Receptors, Amino Acid Cell surface proteins that bind amino acids and trigger changes which influence the behavior of cells. Glutamate receptors are the most common receptors for fast excitatory synaptic transmission in the vertebrate central nervous system, and GAMMA-AMINOBUTYRIC ACID and glycine receptors are the most common receptors for fast inhibition. Amino Acid Receptors,Receptor, Amino Acid,Receptors, Amino Acids,Amino Acid Receptor,Amino Acids Receptors

Related Publications

R L Albin, and R L Makowiec, and Z Hollingsworth, and L S Dure, and J B Penney, and A B Young
January 1986, Brain research bulletin,
R L Albin, and R L Makowiec, and Z Hollingsworth, and L S Dure, and J B Penney, and A B Young
November 1988, Behavioural brain research,
R L Albin, and R L Makowiec, and Z Hollingsworth, and L S Dure, and J B Penney, and A B Young
February 1988, Neuroscience letters,
R L Albin, and R L Makowiec, and Z Hollingsworth, and L S Dure, and J B Penney, and A B Young
January 1998, Amino acids,
R L Albin, and R L Makowiec, and Z Hollingsworth, and L S Dure, and J B Penney, and A B Young
October 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
R L Albin, and R L Makowiec, and Z Hollingsworth, and L S Dure, and J B Penney, and A B Young
December 1991, Neuroscience letters,
R L Albin, and R L Makowiec, and Z Hollingsworth, and L S Dure, and J B Penney, and A B Young
March 2007, Neuropharmacology,
R L Albin, and R L Makowiec, and Z Hollingsworth, and L S Dure, and J B Penney, and A B Young
January 1989, European journal of pharmacology,
R L Albin, and R L Makowiec, and Z Hollingsworth, and L S Dure, and J B Penney, and A B Young
November 1988, Neuroscience letters,
R L Albin, and R L Makowiec, and Z Hollingsworth, and L S Dure, and J B Penney, and A B Young
July 1990, Brain research. Developmental brain research,
Copied contents to your clipboard!