Presence of three P types (VP4 serotypes) and two G types (VP7 serotypes) among bovine rotavirus strains. 1990

Y Matsuda, and O Nakagomi, and P A Offit
Animal Facilities for Experimental Medicine, Akita University School of Medicine, Japan.

Cross neutralization tests with a panel of rotavirus strains representing previously described nine VP7 (G) serotypes revealed that bovine rotavirus strain KK-3, a prototype Japanese bovine serotype 2, belonged to a new serotype (G10), confirming and extending the recent report of Snodgrass et al. [J. Clin. Microbiol. 28: 504-507 (1990)] which showed that hyperimmune serum to the KK-3 strain neutralized the B223 strain, a proposed type strain of G10. Further antigenic characteristics of the KK-3 strain, as well as the 0510 strain (a G6 strain isolated in Japan), were examined in terms of their VP4 (P) specificity. For the characterization of P types, we employed genetic reassortants that possess VP4 gene for UK and VP7 gene for D (G1), VP4 gene for NCDV and VP7 gene for SA11 (G3), or VP4 gene for SA11 and VP7 gene for NCDV (G6) in the plaque reduction neutralization assay with hyperimmune sera against these two Japanese strains and the prototype bovine rotavirus NCDV strain. While the 0510 strain had UK-like P and NCDV-like G types, the KK-3 strain had a distinct set of P and G types. Thus, at least three P types (NCDV-, UK-, and KK-3-like) and two G types (G6 and G10) are present among bovine rotavirus strains.

UI MeSH Term Description Entries
D009500 Neutralization Tests The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50). Neutralization Test,Test, Neutralization,Tests, Neutralization
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000956 Antigens, Viral Substances elaborated by viruses that have antigenic activity. Viral Antigen,Viral Antigens,Antigen, Viral
D012401 Rotavirus A genus of REOVIRIDAE, causing acute gastroenteritis in BIRDS and MAMMALS, including humans. Transmission is horizontal and by environmental contamination. Seven species (Rotaviruses A thru G) are recognized. Neonatal Calf Diarrhea Virus,Rotaviruses
D012703 Serotyping Process of determining and distinguishing species of bacteria or viruses based on antigens they share. Serotypings
D036022 Capsid Proteins Proteins that form the CAPSID of VIRUSES. Procapsid Protein,Procapsid Proteins,Viral Coat Protein,Viral Coat Proteins,Viral V Antigens,Viral V Proteins,Capsid Protein,Viral Outer Coat Protein,Antigens, Viral V,Coat Protein, Viral,V Antigens, Viral,V Proteins, Viral

Related Publications

Y Matsuda, and O Nakagomi, and P A Offit
January 1996, Archives of virology. Supplementum,
Y Matsuda, and O Nakagomi, and P A Offit
September 1992, The Journal of general virology,
Y Matsuda, and O Nakagomi, and P A Offit
September 1989, Journal of clinical microbiology,
Y Matsuda, and O Nakagomi, and P A Offit
February 2002, Veterinary microbiology,
Y Matsuda, and O Nakagomi, and P A Offit
May 1995, Journal of clinical microbiology,
Y Matsuda, and O Nakagomi, and P A Offit
September 1994, Virology,
Y Matsuda, and O Nakagomi, and P A Offit
January 1994, Microbiology and immunology,
Y Matsuda, and O Nakagomi, and P A Offit
September 2010, The Journal of infectious diseases,
Copied contents to your clipboard!