The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. 1990

M Scheffner, and B A Werness, and J M Huibregtse, and A J Levine, and P M Howley
Laboratory of Tumor Virus Biology, National Cancer Institute, Bethesda, Maryland 20892.

The E6 protein encoded by the oncogenic human papillomavirus types 16 and 18 is one of two viral products expressed in HPV-associated cancers. E6 is an oncoprotein which cooperates with E7 to immortalize primary human keratinocytes. Insight into the mechanism by which E6 functions in oncogenesis is provided by the observation that the E6 protein encoded by HPV-16 and HPV-18 can complex the wild-type p53 protein in vitro. Wild-type p53 gene has tumor suppressor properties, and is a target for several of the oncoproteins encoded by DNA tumor viruses. In this study we demonstrate that the E6 proteins of the oncogenic HPVs that bind p53 stimulate the degradation of p53. The E6-promoted degradation of p53 is ATP dependent and involves the ubiquitin-dependent protease system. Selective degradation of cellular proteins such as p53 with negative regulatory functions provides a novel mechanism of action for dominant-acting oncoproteins.

UI MeSH Term Description Entries
D009856 Oncogene Proteins, Viral Products of viral oncogenes, most commonly retroviral oncogenes. They usually have transforming and often protein kinase activities. Viral Oncogene Proteins,Viral Transforming Proteins,v-onc Proteins,Transforming Proteins, Viral,v onc Proteins
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000952 Antigens, Polyomavirus Transforming Polyomavirus antigens which cause infection and cellular transformation. The large T antigen is necessary for the initiation of viral DNA synthesis, repression of transcription of the early region and is responsible in conjunction with the middle T antigen for the transformation of primary cells. Small T antigen is necessary for the completion of the productive infection cycle. Polyomavirus Large T Antigens,Polyomavirus Middle T Antigens,Polyomavirus Small T Antigens,Polyomavirus T Proteins,Polyomavirus Transforming Antigens,Polyomavirus Tumor Antigens,SV40 T Antigens,SV40 T Proteins,Simian Sarcoma Virus Proteins,Polyomaviruses Large T Proteins,Polyomaviruses Middle T Proteins,Polyomaviruses Small T Proteins,Antigens, Polyomavirus Tumor,Antigens, SV40 T,Proteins, Polyomavirus T,Proteins, SV40 T,T Antigens, SV40,T Proteins, Polyomavirus,T Proteins, SV40,Transforming Antigens, Polyomavirus,Tumor Antigens, Polyomavirus
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D014452 Ubiquitins A family of proteins that are structurally-related to Ubiquitin. Ubiquitins and ubiquitin-like proteins participate in diverse cellular functions, such as protein degradation and HEAT-SHOCK RESPONSE, by conjugation to other proteins. Ubiquitin-Like Protein,Ubiquitin-Like Proteins,Protein, Ubiquitin-Like,Proteins, Ubiquitin-Like,Ubiquitin Like Protein,Ubiquitin Like Proteins

Related Publications

M Scheffner, and B A Werness, and J M Huibregtse, and A J Levine, and P M Howley
December 1991, The EMBO journal,
M Scheffner, and B A Werness, and J M Huibregtse, and A J Levine, and P M Howley
April 1990, Science (New York, N.Y.),
M Scheffner, and B A Werness, and J M Huibregtse, and A J Levine, and P M Howley
November 2007, Cancer research,
M Scheffner, and B A Werness, and J M Huibregtse, and A J Levine, and P M Howley
November 2000, Bioorganic & medicinal chemistry,
M Scheffner, and B A Werness, and J M Huibregtse, and A J Levine, and P M Howley
January 2011, PloS one,
M Scheffner, and B A Werness, and J M Huibregtse, and A J Levine, and P M Howley
March 1991, Journal of virology,
M Scheffner, and B A Werness, and J M Huibregtse, and A J Levine, and P M Howley
August 1992, Journal of virology,
M Scheffner, and B A Werness, and J M Huibregtse, and A J Levine, and P M Howley
April 2013, Oncology reports,
M Scheffner, and B A Werness, and J M Huibregtse, and A J Levine, and P M Howley
October 1992, Journal of virology,
M Scheffner, and B A Werness, and J M Huibregtse, and A J Levine, and P M Howley
February 2019, Cancer prevention research (Philadelphia, Pa.),
Copied contents to your clipboard!