Transposition burst of the ISH27 insertion element family in Halobacterium halobium. 1990

F Pfeifer, and U Blaseio
Max-Planck-Institut für Biochemie, Martinsried, FRG.

Investigation of the plasmid pHH4 in single colonies of Halobacterium halobium PHH4 indicated transposition of insertion elements in 20% of the colonies. Seven ISH27 insertions were observed as well as one ISH23 insertion. The various copies of ISH27 were compared to the two ISH27 elements already present in pHH4, and to the ISH27 element that was identified in the bacteriopsin (bop) gene of a Bop mutant. These ten copies of ISH27 constitute three types on the basis of DNA sequence identity: ISH27-1 (1398 bp), ISH27-2, and ISH27-3 (1389 bp each). The DNA sequence comparison between the three types indicates a region of 1200 bp where the identity between ISH27-1 and ISH27-2 or ISH27-3 is 82-83%. ISH27-2 and ISH27-3 are 95% identical in this region. The remaining region exhibits a lower DNA similarity (64-74% identity) between the different copies. An open reading frame of 1167 nucleotides spans the more conserved region, and a corresponding transcript could be detected in H. halobium PHH4, but not in H. halobium wild-type. ISH27-1 is 91% identical to members of the insertion sequence-like elements ISH51 of Haloferax volcanii, whereas the other two ISH27 element types are 82-83% identical to ISH51. The transposition 'burst' of ISH27 was only seen after storage of the cells for more than two years at 4 degrees C. Upon continuous cultivation at 37 degrees C no transposition event could be observed, suggesting that stress factor(s) might have caused the high transposition rate.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D006217 Halobacterium A genus of HALOBACTERIACEAE whose growth requires a high concentration of salt. Binary fission is by constriction.
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings

Related Publications

F Pfeifer, and U Blaseio
February 1953, Journal of general microbiology,
F Pfeifer, and U Blaseio
December 1982, Proceedings of the National Academy of Sciences of the United States of America,
F Pfeifer, and U Blaseio
April 1974, Proceedings of the National Academy of Sciences of the United States of America,
F Pfeifer, and U Blaseio
January 1982, The EMBO journal,
F Pfeifer, and U Blaseio
January 1981, Journal of bacteriology,
F Pfeifer, and U Blaseio
September 1976, Canadian journal of microbiology,
F Pfeifer, and U Blaseio
December 1968, The Biochemical journal,
F Pfeifer, and U Blaseio
December 1979, Journal of bacteriology,
Copied contents to your clipboard!