Expression cloning of a cDNA encoding the mouse pituitary thyrotropin-releasing hormone receptor. 1990

R E Straub, and G C Frech, and R H Joho, and M C Gershengorn
Department of Medicine, Cornell University Medical College, New York, NY 10021.

Thyrotropin-releasing hormone (TRH) is an important extracellular regulatory molecule that functions as a releasing factor in the anterior pituitary gland and as a neurotransmitter/neuromodulator in the central and peripheral nervous systems. Binding sites for TRH are present in these tissues, but the TRH receptor (TRH-R) has not been purified from any source. Using Xenopus laevis oocytes in an expression cloning strategy, we have isolated a cDNA clone that encodes the mouse pituitary TRH-R. This conclusion is based on the following evidence. Injection of sense RNA transcribed in vitro from this cDNA into Xenopus oocytes leads to expression of cell-surface receptors that bind TRH and the competitive antagonist chlordiazepoxide with appropriate affinities and that elicit electrophysiological responses to TRH with the appropriate concentration dependency. Antisense RNA inhibits the TRH response in Xenopus oocytes injected with RNA isolated from normal rat anterior pituitary glands. Finally, transfection of COS-1 cells with this cDNA leads to expression of receptors that bind TRH and chlordiazepoxide with appropriate affinities and that transduce TRH stimulation of inositol phosphate formation. The 3.8-kilobase mouse TRH-R cDNA encodes a protein of 393 amino acids that shows similarities to other guanine nucleotide-binding regulatory protein-coupled receptors.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005260 Female Females
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R E Straub, and G C Frech, and R H Joho, and M C Gershengorn
September 1994, Proceedings of the National Academy of Sciences of the United States of America,
R E Straub, and G C Frech, and R H Joho, and M C Gershengorn
November 1998, The Journal of biological chemistry,
R E Straub, and G C Frech, and R H Joho, and M C Gershengorn
January 2011, Animal biotechnology,
R E Straub, and G C Frech, and R H Joho, and M C Gershengorn
October 1992, The Journal of biological chemistry,
R E Straub, and G C Frech, and R H Joho, and M C Gershengorn
June 1992, The Biochemical journal,
R E Straub, and G C Frech, and R H Joho, and M C Gershengorn
January 1993, Recent progress in hormone research,
R E Straub, and G C Frech, and R H Joho, and M C Gershengorn
January 1983, Nature,
R E Straub, and G C Frech, and R H Joho, and M C Gershengorn
April 1990, Molecular endocrinology (Baltimore, Md.),
R E Straub, and G C Frech, and R H Joho, and M C Gershengorn
April 1983, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!