Fatty acid oxidation capacity and fatty acid-binding protein content of different cell types isolated from rat heart. 1990

M C Linssen, and M M Vork, and Y F de Jong, and J F Glatz, and G J van der Vusse
Department of Physiology, University of Limburg, Maastricht, The Netherlands.

Heart tissue contains appreciable amounts of fatty acid-binding protein (FABP). FABP is thought to play a crucial role in the transport of fatty acids from the cellular membrane to the intracellular site of oxidation and also, in case of endothelial cells, in the transfer of fatty acids from the vascular to the interstitial compartment through the endothelial cytoplasm. The present study was designed to delineate a possible quantitative relationship between the capacity of different cell types in the heart to oxidize fatty acids and the presence of FABP. Palmitate oxidation capacity, measured in homogenates of cells isolated from adult rat hearts, was 2 nmol/min per mg tissue protein in freshly isolated cardiomyocytes (CMC), but only 0.09 and 0.31 nmol/min per mg tissue protein in cultivated endothelial (CEC) and fibroblast-like cells (CFLC), respectively. Palmitate oxidation rates were closely related to the cytochrome C oxidase activity and, hence, to the mitochondrial density in the cells under investigation. In CMC the content of cytosolic H-FABP (H-FABPc) was about 4.5 micrograms/mg tissue protein. However, in CEC and CFLC the FABP content was less than 0.01 and 0.004 micrograms/mg tissue protein, respectively, corresponding to at maximum 0.2% of the FABP content of CMC. These findings indicate a marked difference between CMC and non-myocytal cells in the heart regarding their capacity to oxidize fatty acids, and a marked disproportion between the fatty acid oxidation capacity and immunochemically determined FABP content in both CEC and CFLC. The functional implication of these observations remains to be elucidated.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010168 Palmitates Salts and esters of the 16-carbon saturated monocarboxylic acid--palmitic acid. Hexadecanoates,Palmitate
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids

Related Publications

M C Linssen, and M M Vork, and Y F de Jong, and J F Glatz, and G J van der Vusse
January 1992, Progress in clinical and biological research,
M C Linssen, and M M Vork, and Y F de Jong, and J F Glatz, and G J van der Vusse
January 1984, The Journal of biological chemistry,
M C Linssen, and M M Vork, and Y F de Jong, and J F Glatz, and G J van der Vusse
April 1996, The international journal of biochemistry & cell biology,
M C Linssen, and M M Vork, and Y F de Jong, and J F Glatz, and G J van der Vusse
April 1984, The Journal of biological chemistry,
M C Linssen, and M M Vork, and Y F de Jong, and J F Glatz, and G J van der Vusse
March 1994, Biochemical and biophysical research communications,
M C Linssen, and M M Vork, and Y F de Jong, and J F Glatz, and G J van der Vusse
April 1986, The Journal of biological chemistry,
M C Linssen, and M M Vork, and Y F de Jong, and J F Glatz, and G J van der Vusse
January 1990, Molecular and cellular biochemistry,
M C Linssen, and M M Vork, and Y F de Jong, and J F Glatz, and G J van der Vusse
December 1975, The Biochemical journal,
M C Linssen, and M M Vork, and Y F de Jong, and J F Glatz, and G J van der Vusse
January 1993, Molecular and cellular biochemistry,
M C Linssen, and M M Vork, and Y F de Jong, and J F Glatz, and G J van der Vusse
February 1994, Investigative ophthalmology & visual science,
Copied contents to your clipboard!