Dialdehyde ATP derivative as an affinity modifier of the Na+,K(+)-ATPase active site. 1990

L R Bernikov, and K N Dzhandzhugazyan, and S V Lutsenko, and N N Modyanov
Shemyakin Institute of Bioorganic Chemistry, USSR Academy of Sciences, Moscow.

Interaction of Na+,K(+)-ATPase from pig kidney in various conformational states with the dialdehyde analogue of ATP, alpha,alpha-(9-adenyl)-alpha'-D-(hydroxymethyl)diglycolaldehyde triphosphate ester (oATP), has been studied. This interaction leads to an enzyme modification which was shown to be of the affinity type according to the following criteria. 1. oATP can be hydrolyzed by Na+,K(+)-ATPase and prevent inhibition of ATPase activity by gamma-[4-(N-2-chloroethyl-N-methylamino)]benzylamide ATP, indicating that it interacts with Na+,K(+)-ATPase in the enzyme active site. 2. oATP irreversibly inhibits ATP-hydrolyzing activity of Na+,K(+)-ATPase; the extent of inactivation is decreased in the presence of 20 mM ATP and depends on the ion composition of the modification medium. The inhibition and ATP protection are maximal in Na+,Mg2(+)-containing buffer. 3. The value of [14C]oATP incorporation into the alpha subunit is proportional to the degree of enzyme inactivation at low (less than 0.1 mM) concentration of oATP and, on extrapolation to complete inhibition, corresponds to incorporation of 1.05 mol reagent/mol alpha subunit. 4. Tryptic hydrolysis of the isolated oATP-modified alpha subunit and subsequent separation of the peptides revealed only one labelled fragment with a molecular mass of about 10 kDa. Localization of the modified fragment in the alpha-subunit polypeptide chain is discussed. A morpholine-like structure was shown to be formed as a result of the modification.

UI MeSH Term Description Entries
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

L R Bernikov, and K N Dzhandzhugazyan, and S V Lutsenko, and N N Modyanov
January 1980, Journal of supramolecular structure,
L R Bernikov, and K N Dzhandzhugazyan, and S V Lutsenko, and N N Modyanov
July 1977, Nature,
L R Bernikov, and K N Dzhandzhugazyan, and S V Lutsenko, and N N Modyanov
July 1983, The Journal of biological chemistry,
L R Bernikov, and K N Dzhandzhugazyan, and S V Lutsenko, and N N Modyanov
June 1989, Biochimica et biophysica acta,
L R Bernikov, and K N Dzhandzhugazyan, and S V Lutsenko, and N N Modyanov
April 1992, The Journal of biological chemistry,
L R Bernikov, and K N Dzhandzhugazyan, and S V Lutsenko, and N N Modyanov
January 1999, Biochemical and biophysical research communications,
L R Bernikov, and K N Dzhandzhugazyan, and S V Lutsenko, and N N Modyanov
December 1998, FEBS letters,
L R Bernikov, and K N Dzhandzhugazyan, and S V Lutsenko, and N N Modyanov
September 1989, Neurochemical research,
L R Bernikov, and K N Dzhandzhugazyan, and S V Lutsenko, and N N Modyanov
December 1973, FEBS letters,
L R Bernikov, and K N Dzhandzhugazyan, and S V Lutsenko, and N N Modyanov
June 1989, General physiology and biophysics,
Copied contents to your clipboard!