The contribution of local tissue thyroxine monodeiodination to the nuclear 3,5,3'-triiodothyronine in pituitary, liver, and kidney of euthyroid rats. 1978

J E Silva, and T E Dick, and P R Larsen

The contributions of local T4 monodeiodination and plasma T3 to the nuclear T3 of anterior pituitary, liver, and kidney were measured in euthyroid rats. After injection of [125I]T4, there was a gradual increase in the quantity of plasma [125I]T3 in excess of injected contaminant, which peaked at approximately 12 h after injection and remained a constant fraction of plasma [125I]T4 (2.8 X 10(-3) after that time. In the nuclei of anterior pituitary tissue, there was also a slow increase in locally produced [125I]T3 (in excess of that which could be accounted for by plasma [125I]T3) which appeared to peak at about 16 h after [125I]T4 administration. The ratio of nuclear [125I]T3 generated intracellularly to plasma [125I]T4 was constant at 18 and 24 h after T4 injection and was 13 +/- 2 X 10(-3) in nuclei of pituitary, 2.0 +/- 0.4 x 10(-3) in liver, and 0.47 +/- 0.1 x 10(-3) in kidney (all values are mean +/- SD). This locally generated T3 resulted in a markedly higher nuclear to plasma (N:P) ratio for [125I]T3 than for injected [131I]T3 in the same animals. The N:P ratio for [125I]T3 at equilibrium after injected T4 was 2.4 +/- 0.6, 0.47 +/- 0.09, and 0.10 +/- 0.03 (nanograms of T3 (mg DNA)-1/ng T3 ml-1) in pituitary, liver, and kidney. Comparable values for [131I]T3 N:P ratios were 0.47 +/- 0.14 (pituitary), 0.18 +/- 0.01 (liver), and 0.036 +/- 0.008 (kidney). Using RIA values for plasma T4 and T3 concentrations in these rats and maximal nuclear T3-binding capacities estimated in parallel experiments, the gravimetric quantities of nuclear T3 derived from plasma T3 and from local T4 to T3 monodeiodination were estimated and expressed as the percentage of saturation of T3 receptors. Seventy-eight percent of nuclear T3 receptor sites in anterior pituitary were occupied with one-half of the nuclear T3 derived directly from plasma T3 and the other half from intrapituitary T4 monodeiodination. Local T4 monodeiodination provided only 28% and 14%, respectively, of the nuclear T3 in liver and kidney, and the nuclear receptors of these tissues were about 50% saturated. Since our previous studies have shown that the occupancy of the pituitary nuclear T3 receptors may regulate TSH release, these data provide a mechanism by which TSH secretion could be altered by changes in either plasma T3 or T4, whereas nuclear T3 in liver and kidney is predominantly a function of the plasma T3 concentration.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013974 Thyroxine The major hormone derived from the thyroid gland. Thyroxine is synthesized via the iodination of tyrosines (MONOIODOTYROSINE) and the coupling of iodotyrosines (DIIODOTYROSINE) in the THYROGLOBULIN. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form TRIIODOTHYRONINE which exerts a broad spectrum of stimulatory effects on cell metabolism. L-Thyroxine,Levothyroxine,T4 Thyroid Hormone,3,5,3',5'-Tetraiodothyronine,Berlthyrox,Dexnon,Eferox,Eltroxin,Eltroxine,Euthyrox,Eutirox,L-3,5,3',5'-Tetraiodothyronine,L-Thyrox,L-Thyroxin Henning,L-Thyroxin beta,L-Thyroxine Roche,Levo-T,Levothroid,Levothyroid,Levothyroxin Deladande,Levothyroxin Delalande,Levothyroxine Sodium,Levoxine,Levoxyl,Lévothyrox,Novothyral,Novothyrox,O-(4-Hydroxy-3,5-diiodophenyl) 3,5-diiodo-L-tyrosine,O-(4-Hydroxy-3,5-diiodophenyl)-3,5-diiodotyrosine,Oroxine,Sodium Levothyroxine,Synthroid,Synthrox,Thevier,Thyrax,Thyroxin,Tiroidine,Tiroxina Leo,Unithroid,L Thyrox,L Thyroxin Henning,L Thyroxin beta,L Thyroxine,L Thyroxine Roche,Levo T,Thyroid Hormone, T4
D014284 Triiodothyronine A T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5' position of the outer ring of the iodothyronine nucleus. The hormone finally delivered and used by the tissues is mainly T3. Liothyronine,T3 Thyroid Hormone,3,3',5-Triiodothyronine,Cytomel,Liothyronine Sodium,Thyroid Hormone, T3

Related Publications

J E Silva, and T E Dick, and P R Larsen
February 1977, Acta endocrinologica,
J E Silva, and T E Dick, and P R Larsen
September 1977, Clinica chimica acta; international journal of clinical chemistry,
J E Silva, and T E Dick, and P R Larsen
November 1981, Endocrinology,
J E Silva, and T E Dick, and P R Larsen
May 1987, Endocrinology,
J E Silva, and T E Dick, and P R Larsen
November 1977, Science (New York, N.Y.),
Copied contents to your clipboard!