Synthesis and biological properties of macrolactam analogs of the natural product macrolide (-)-A26771B. 2011

Sophie Canova, and Renaud Lépine, and Amber Thys, and Anne Baron, and Didier Roche
Edelris, 115 Avenue Lacassagne, 69003 Lyon, France.

Promising synthetic derivatives of macrolactone natural product (-)-A26771B have been designed and synthesized both from semisynthesis and total synthesis. Further optimization led to the first synthesis of macrolactam analogs of (-)-A26771B with improved antibacterial activity and metabolic stability.

UI MeSH Term Description Entries
D007783 Lactones Cyclic esters of hydroxy carboxylic acids, containing a 1-oxacycloalkan-2-one structure. Large cyclic lactones of over a dozen atoms are MACROLIDES. Lactone
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001685 Biological Factors Endogenously synthesized compounds that influence biological processes not otherwise classified under ENZYMES; HORMONES or HORMONE ANTAGONISTS. Biologic Factors,Biological Factor,Factor, Biologic,Factor, Biological,Factors, Biological,Biologic Factor,Factors, Biologic
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular

Related Publications

Sophie Canova, and Renaud Lépine, and Amber Thys, and Anne Baron, and Didier Roche
December 2016, Organic & biomolecular chemistry,
Sophie Canova, and Renaud Lépine, and Amber Thys, and Anne Baron, and Didier Roche
September 2012, Organic & biomolecular chemistry,
Sophie Canova, and Renaud Lépine, and Amber Thys, and Anne Baron, and Didier Roche
November 1981, Prostaglandins,
Sophie Canova, and Renaud Lépine, and Amber Thys, and Anne Baron, and Didier Roche
July 1987, The Journal of antibiotics,
Sophie Canova, and Renaud Lépine, and Amber Thys, and Anne Baron, and Didier Roche
January 2003, Nucleic acids research. Supplement (2001),
Sophie Canova, and Renaud Lépine, and Amber Thys, and Anne Baron, and Didier Roche
January 2007, Chemistry (Weinheim an der Bergstrasse, Germany),
Sophie Canova, and Renaud Lépine, and Amber Thys, and Anne Baron, and Didier Roche
February 2013, Molecules (Basel, Switzerland),
Sophie Canova, and Renaud Lépine, and Amber Thys, and Anne Baron, and Didier Roche
January 2000, The Journal of organic chemistry,
Sophie Canova, and Renaud Lépine, and Amber Thys, and Anne Baron, and Didier Roche
November 1974, Journal of medicinal chemistry,
Sophie Canova, and Renaud Lépine, and Amber Thys, and Anne Baron, and Didier Roche
July 2018, Angewandte Chemie (International ed. in English),
Copied contents to your clipboard!