Rotational mobility of Sendai virus glycoproteins in membranes of fused human erythrocytes and in the envelopes of cell-bound virions. 1990

B Aroeti, and T M Jovin, and Y I Henis
Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University Israel.

The rotational mobility of Sendai virus envelope glycoproteins (F, the fusion protein, and HN, the hemagglutinin/neuraminidase) was determined by using erythrosin (ER)-labeled monovalent Fab' antibody fragments directed specifically against either F or HN. By use of time-resolved phosphorescence anisotropy, the rotational mobility of Er-Fab'-viral glycoprotein complexes was studied both in the envelopes of unfused virions bound to erythrocyte ghosts and in the target cell membrane after fusion had occurred. The rotational correlation times (phi) of Er-Fab'-labeled F and HN were rather similar in the envelopes of bound unfused virions, but highly different in membranes of fused cells. The different phi values indicate that F and HN diffuse separately in the target cell membrane and for the major part are not complexed together. The temperature dependence of the phi values of the Er-Fab'-viral glycoprotein complexes revealed a breakpoint at 22 degrees C for the F protein both in bound virions and in the membranes of fused cells, and for the HN proteins in the envelopes of bound virions. In all these cases, the phi values increased between 4 and 22 degrees C, demonstrating a reduction in the rate of rotational diffusion. Further elevation of the temperature reversed the direction of the change in phi. This phenomenon may reflect a temperature-dependent microaggregation of F and HN saturating at ca. 22 degrees C and presumably related to the fusion mechanism since the breakpoint temperature correlates closely with the threshold temperature for virus-cell and cell-cell fusion.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D010222 Parainfluenza Virus 1, Human A species of RESPIROVIRUS also called hemadsorption virus 2 (HA2), which causes laryngotracheitis in humans, especially children. Hemadsorption Virus 2,Human parainfluenza virus 1,Para-Influenza Virus Type 1,Parainfluenza Virus Type 1,Para Influenza Virus Type 1
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014760 Viral Fusion Proteins Proteins, usually glycoproteins, found in the viral envelopes of a variety of viruses. They promote cell membrane fusion and thereby may function in the uptake of the virus by cells. Fusion Proteins, Viral,Viral Fusion Glycoproteins,F Protein (Sendai Virus),F Protein Measles Virus,F Protein Newcastle Disease Virus,F Protein SV,F-Glycoprotein SV,F1 Polypeptide (Paramyxovirus),Fusion Glycoprotein, Viral,Fusion VP1 Protein,Glycoprotein, Viral Fusion,Measles Fusion Protein,Mumps Virus Fusion Protein,Paramyxovirus Fusion Protein,Sendai Virus Fusion Protein,Viral Fusion-GP,Virus Fusion Proteins,Fusion Glycoproteins, Viral,Fusion Protein, Measles,Fusion Protein, Paramyxovirus,Fusion Proteins, Virus,Fusion-GP, Viral,Glycoproteins, Viral Fusion,Proteins, Virus Fusion,VP1 Protein, Fusion,Viral Fusion GP,Viral Fusion Glycoprotein
D014763 Viral Matrix Proteins Proteins associated with the inner surface of the lipid bilayer of the viral envelope. These proteins have been implicated in control of viral transcription and may possibly serve as the "glue" that binds the nucleocapsid to the appropriate membrane site during viral budding from the host cell. Membrane Proteins, Viral,Viral M Proteins,Viral M Protein,Viral Membrane Proteins
D014771 Virion The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos. Virus Particle,Viral Particle,Viral Particles,Particle, Viral,Particle, Virus,Particles, Viral,Particles, Virus,Virions,Virus Particles

Related Publications

B Aroeti, and T M Jovin, and Y I Henis
October 1985, The Journal of biological chemistry,
B Aroeti, and T M Jovin, and Y I Henis
November 1982, Experimental cell research,
B Aroeti, and T M Jovin, and Y I Henis
May 1974, Proceedings of the National Academy of Sciences of the United States of America,
B Aroeti, and T M Jovin, and Y I Henis
July 1983, Biochimica et biophysica acta,
B Aroeti, and T M Jovin, and Y I Henis
July 1975, Virology,
Copied contents to your clipboard!