Purification to homogeneity of latent and active 58-kilodalton forms of human neutrophil collagenase. 1990

K A Mookhtiar, and H E Van Wart
Department of Chemistry, Florida State University, Tallahassee 32306.

Latent and active 58-kDa forms of human neutrophil collagenase (HNC) have been purified to homogeneity. Buffy coats were extracted in the presence and absence of phenylmethanesulfonyl fluoride to generate crude starting preparations that contained latent and active HNC, respectively. The buffers used in preparing these extracts and for all subsequent chromatographic steps contained NaCl at a concentration of 0.5 M or greater, 0.05% Brij-35, concentrations of CaCl2 of 5 mM or greater, and (when feasible) 50 microM ZnSO4 to stabilize the HNC. The collagenase activity in the buffy coat extracts was adsorbed to a Reactive Red 120-agarose column at pH 7.5 in 0.5 M NaCl and was eluted when the NaCl concentration was increased to 1 M. The active and p-(chloromercuri)benzoate-activated latent enzymes were next adsorbed to a Sepharose-CH-Pro-Leu-Gly-NHOH affinity resin in 1 M NaCl at pH 7.5 and desorbed at pH 9 to give a fraction containing only HNC and a small amount of neutrophil gelatinase. The latter enzyme was removed by passage over a gelatin-Sepharose column in 1 M NaCl at pH 7.5. The purified samples of active and latent HNC were obtained with typical cumulative yields of 32 and 82% and specific activities toward soluble rat type I collagen at 30 degrees C of 7200 and 12,000 micrograms min-1 mg-1, respectively. These specific activities are markedly higher than previously reported for HNC. Both active and latent HNC exhibit a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis both in the presence and in the absence of 2-mercaptoethanol. The mobility of latent HNC is consistent with a molecular weight of approximately 58K, with the active form exhibiting a slightly lower (less than 1-2K) molecular weight.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002729 Chloromercuribenzoates Chloride and mercury-containing derivatives of benzoic acid.
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D003012 Microbial Collagenase A metalloproteinase which degrades helical regions of native collagen to small fragments. Preferred cleavage is -Gly in the sequence -Pro-Xaa-Gly-Pro-. Six forms (or 2 classes) have been isolated from Clostridium histolyticum that are immunologically cross-reactive but possess different sequences and different specificities. Other variants have been isolated from Bacillus cereus, Empedobacter collagenolyticum, Pseudomonas marinoglutinosa, and species of Vibrio and Streptomyces. EC 3.4.24.3. Clostridiopeptidase A,Clostridium histolyticum Collagenase,Collagenase, Microbial,Collagenase Clostridium histolyticum,Collagenase-Like Peptidase,Collalysine,Nucleolysin,Clostridium histolyticum, Collagenase,Collagenase Like Peptidase,Collagenase, Clostridium histolyticum,Peptidase, Collagenase-Like,histolyticum, Collagenase Clostridium
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

K A Mookhtiar, and H E Van Wart
April 1986, The Journal of biological chemistry,
K A Mookhtiar, and H E Van Wart
March 1984, Collagen and related research,
K A Mookhtiar, and H E Van Wart
February 1991, Biochemical Society transactions,
K A Mookhtiar, and H E Van Wart
January 1984, Preparative biochemistry,
K A Mookhtiar, and H E Van Wart
January 1985, Medical biology,
K A Mookhtiar, and H E Van Wart
November 1980, The Biochemical journal,
K A Mookhtiar, and H E Van Wart
November 1982, Biochemistry,
K A Mookhtiar, and H E Van Wart
January 1992, Matrix (Stuttgart, Germany). Supplement,
K A Mookhtiar, and H E Van Wart
January 1995, Methods in enzymology,
Copied contents to your clipboard!