Lipid-protein interactions in ADP-ATP carrier/egg phosphatidylcholine recombinants studied by spin-label ESR spectroscopy. 1990

L I Horváth, and M Drees, and K Beyer, and M Klingenberg, and D Marsh
Max-Planck-Institut für biophysikalische Chemie, Abteilung Spektroskopie, Göttingen, FRG.

The stoichiometry and specificity of lipid-protein interaction, as well as the lipid exchange rates at the protein interface, have been determined from the electron spin resonance spectra of spin-labeled lipids in reconstituted complexes of the mitochondrial ADP-ATP carrier with egg phosphatidylcholine. With the exception of cardiolipin and phosphatidic acid, the lipids studied are found to compete for approximately 50 sites at the intramembranous surface of the protein dimer. This number of first-shell lipid sites is unusually large for a protein of this size. The specificity for the protein is in the order stearic acid approximately phosphatidic acid approximately cardiolipin greater than phosphatidylserine greater than phosphatidylglycerol approximately phosphatidylcholine, with the maximum association constant relative to phosphatidylcholine being approximately 4. The selectivity for anionic lipids was partially screened with increasing ionic strength, but to a lesser extent for cardiolipin and phosphatidic acid than for stearic acid. Only in the case of phosphatidylserine was the selectivity reduced at high ionic strength to a level close to that for phosphatidylcholine. The off rates for lipid exchange at the protein surface were independent of lipid/protein ratio and correlated in a reciprocal fashion with the different lipid selectivities, varying from 5 x 10(6) s-1 for stearic acid at low ionic strength to 2 x 10(7) s-1 for phosphatidylcholine and phosphatidylglycerol. The off rates for cardiolipin were unusually low in comparison with the observed selectivity, and indicated the existence of a special population of sites (ca. 30% of the total) for cardiolipin, at which the exchange rate was very low.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002308 Cardiolipins Acidic phospholipids composed of two molecules of phosphatidic acid covalently linked to a molecule of glycerol. They occur primarily in mitochondrial inner membranes and in bacterial plasma membranes. They are the main antigenic components of the Wassermann-type antigen that is used in nontreponemal SYPHILIS SERODIAGNOSIS. Cardiolipin,Diphosphatidylglycerol,Diphosphatidylglycerols
D004531 Eggs Animal reproductive bodies, or the contents thereof, used as food. The concept is differentiated from OVUM, the anatomic or physiologic entity.
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D000226 Mitochondrial ADP, ATP Translocases A class of nucleotide translocases found abundantly in mitochondria that function as integral components of the inner mitochondrial membrane. They facilitate the exchange of ADP and ATP between the cytosol and the mitochondria, thereby linking the subcellular compartments of ATP production to those of ATP utilization. ADP,ATP Carrier,ADP,ATP Translocator Protein,Adenine Nucleotide Translocase,ADP Translocase,ATP Translocase,ATP,ADP-Carrier,ATP-ADP Translocase,Adenine Nucleotide Carrier (Mitochondrial),Mitochondrial ADP-ATP Carriers,ADP-ATP Carriers, Mitochondrial,Mitochondrial ADP ATP Carriers
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013113 Spin Labels Molecules which contain an atom or a group of atoms exhibiting an unpaired electron spin that can be detected by electron spin resonance spectroscopy and can be bonded to another molecule. (McGraw-Hill Dictionary of Chemical and Technical Terms, 4th ed) Spin Label,Label, Spin,Labels, Spin
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

L I Horváth, and M Drees, and K Beyer, and M Klingenberg, and D Marsh
August 1999, Bioscience reports,
L I Horváth, and M Drees, and K Beyer, and M Klingenberg, and D Marsh
November 1988, Biochemistry,
L I Horváth, and M Drees, and K Beyer, and M Klingenberg, and D Marsh
January 1982, Biophysical journal,
L I Horváth, and M Drees, and K Beyer, and M Klingenberg, and D Marsh
September 1989, Biochemistry,
L I Horváth, and M Drees, and K Beyer, and M Klingenberg, and D Marsh
May 2003, Biochemistry,
L I Horváth, and M Drees, and K Beyer, and M Klingenberg, and D Marsh
January 1991, Journal of biochemical and biophysical methods,
L I Horváth, and M Drees, and K Beyer, and M Klingenberg, and D Marsh
September 1995, Biochemistry,
L I Horváth, and M Drees, and K Beyer, and M Klingenberg, and D Marsh
May 1980, Biochimica et biophysica acta,
L I Horváth, and M Drees, and K Beyer, and M Klingenberg, and D Marsh
October 1990, The Journal of biological chemistry,
Copied contents to your clipboard!