Identification of a microRNA signature in renal fibrosis: role of miR-21. 2011

Abolfazl Zarjou, and Shanzhong Yang, and Edward Abraham, and Anupam Agarwal, and Gang Liu
Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.

Renal fibrosis is a final stage of many forms of kidney disease and leads to impairment of kidney function. The molecular pathogenesis of renal fibrosis is currently not well-understood. microRNAs (miRNAs) are important players in initiation and progression of many pathologic processes including diabetes, cancer, and cardiovascular disease. However, the role of miRNAs in kidney injury and repair is not well-characterized. In the present study, we found a unique miRNA signature associated with unilateral ureteral obstruction (UUO)-induced renal fibrosis. We found altered expression in UUO kidneys of miRNAs that have been shown to be responsive to stimulation by transforming growth factor (TGF)-β1 or TNF-α. Among these miRNAs, miR-21 demonstrated the greatest increase in UUO kidneys. The enhanced expression of miR-21 was located mainly in distal tubular epithelial cells. miR-21 expression was upregulated in response to treatment with TGF-β1 or TNF-α in human renal tubular epithelial cells in vitro. Furthermore, we found that blocking miR-21 in vivo attenuated UUO-induced renal fibrosis, presumably through diminishing the expression of profibrotic proteins and reducing infiltration of inflammatory macrophages in UUO kidneys. Our data suggest that targeting specific miRNAs could be a novel therapeutic approach to treat renal fibrosis.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005355 Fibrosis Any pathological condition where fibrous connective tissue invades any organ, usually as a consequence of inflammation or other injury. Cirrhosis,Fibroses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D014517 Ureteral Obstruction Blockage in any part of the URETER causing obstruction of urine flow from the kidney to the URINARY BLADDER. The obstruction may be congenital, acquired, unilateral, bilateral, complete, partial, acute, or chronic. Depending on the degree and duration of the obstruction, clinical features vary greatly such as HYDRONEPHROSIS and obstructive nephropathy. Obstruction, Ureteral,Obstructions, Ureteral,Ureteral Obstructions
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D053773 Transforming Growth Factor beta1 A subtype of transforming growth factor beta that is synthesized by a wide variety of cells. It is synthesized as a precursor molecule that is cleaved to form mature TGF-beta 1 and TGF-beta1 latency-associated peptide. The association of the cleavage products results in the formation a latent protein which must be activated to bind its receptor. Defects in the gene that encodes TGF-beta1 are the cause of CAMURATI-ENGELMANN SYNDROME. TGF-beta1,Transforming Growth Factor-beta1,TGF-beta-1,TGF-beta1 Latency-Associated Protein,TGF-beta1LAP,Transforming Growth Factor beta 1 Latency Associated Peptide,Transforming Growth Factor beta I,Latency-Associated Protein, TGF-beta1,TGF beta 1,TGF beta1 Latency Associated Protein,TGF beta1LAP
D035683 MicroRNAs Small double-stranded, non-protein coding RNAs, 21-25 nucleotides in length generated from single-stranded microRNA gene transcripts by the same RIBONUCLEASE III, Dicer, that produces small interfering RNAs (RNA, SMALL INTERFERING). They become part of the RNA-INDUCED SILENCING COMPLEX and repress the translation (TRANSLATION, GENETIC) of target RNA by binding to homologous 3'UTR region as an imperfect match. The small temporal RNAs (stRNAs), let-7 and lin-4, from C. elegans, are the first 2 miRNAs discovered, and are from a class of miRNAs involved in developmental timing. RNA, Small Temporal,Small Temporal RNA,miRNA,stRNA,Micro RNA,MicroRNA,Primary MicroRNA,Primary miRNA,miRNAs,pre-miRNA,pri-miRNA,MicroRNA, Primary,RNA, Micro,Temporal RNA, Small,miRNA, Primary,pre miRNA,pri miRNA

Related Publications

Abolfazl Zarjou, and Shanzhong Yang, and Edward Abraham, and Anupam Agarwal, and Gang Liu
August 2012, International wound journal,
Abolfazl Zarjou, and Shanzhong Yang, and Edward Abraham, and Anupam Agarwal, and Gang Liu
September 2017, Molecular medicine reports,
Abolfazl Zarjou, and Shanzhong Yang, and Edward Abraham, and Anupam Agarwal, and Gang Liu
June 2009, European journal of immunology,
Abolfazl Zarjou, and Shanzhong Yang, and Edward Abraham, and Anupam Agarwal, and Gang Liu
August 2010, Proceedings of the National Academy of Sciences of the United States of America,
Abolfazl Zarjou, and Shanzhong Yang, and Edward Abraham, and Anupam Agarwal, and Gang Liu
April 2014, Cell biochemistry and biophysics,
Abolfazl Zarjou, and Shanzhong Yang, and Edward Abraham, and Anupam Agarwal, and Gang Liu
September 2011, Journal of the American Society of Nephrology : JASN,
Abolfazl Zarjou, and Shanzhong Yang, and Edward Abraham, and Anupam Agarwal, and Gang Liu
January 2022, Nephron,
Abolfazl Zarjou, and Shanzhong Yang, and Edward Abraham, and Anupam Agarwal, and Gang Liu
September 2012, Basic research in cardiology,
Abolfazl Zarjou, and Shanzhong Yang, and Edward Abraham, and Anupam Agarwal, and Gang Liu
March 2023, Life sciences,
Abolfazl Zarjou, and Shanzhong Yang, and Edward Abraham, and Anupam Agarwal, and Gang Liu
January 2016, Mediators of inflammation,
Copied contents to your clipboard!