Degradation of proteins by the ubiquitin-mediated proteolytic pathway. 1990

A Ciechanover, and H Gonen, and S Elias, and A Mayer
Department of Biochemistry, Rappaport Institute for Research in Medical Sciences, Technion-Israel Institute of Technology, Haifa.

Degradation of a protein by the ubiquitin system involves two distinct processes. In the first step, ubiquitin is covalently linked in an ATP-dependent mode to the protein substrate. The protein moiety of the conjugate is then degraded by a specific protease into free amino acids, resulting in the release of free and reutilizable ubiquitin. This process also requires energy. In this review we will briefly summarize our current knowledge of the role of the ubiquitin system in protein turnover and discuss in detail the mechanism involved in selection of substrates for conjugation and in degradation of ubiquitin-conjugated proteins.

UI MeSH Term Description Entries
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D014452 Ubiquitins A family of proteins that are structurally-related to Ubiquitin. Ubiquitins and ubiquitin-like proteins participate in diverse cellular functions, such as protein degradation and HEAT-SHOCK RESPONSE, by conjugation to other proteins. Ubiquitin-Like Protein,Ubiquitin-Like Proteins,Protein, Ubiquitin-Like,Proteins, Ubiquitin-Like,Ubiquitin Like Protein,Ubiquitin Like Proteins
D021382 Protein Sorting Signals Amino acid sequences found in transported proteins that selectively guide the distribution of the proteins to specific cellular compartments. Leader Signal Peptides,Leader Peptide,Leader Sequences, Peptide,Peptide Leader Sequences,Peptide Signal Sequences,Signal Peptide,Signal Peptides,Signal Sequence, Peptide,Signal Sequences,Signal Sequences, Peptide,Leader Peptides,Leader Sequence, Peptide,Leader Signal Peptide,Peptide Leader Sequence,Peptide Signal Sequence,Peptide, Leader,Peptide, Leader Signal,Peptide, Signal,Peptides, Leader,Peptides, Leader Signal,Peptides, Signal,Protein Sorting Signal,Sequence, Peptide Leader,Sequence, Peptide Signal,Sequence, Signal,Sequences, Peptide Leader,Sequences, Peptide Signal,Sequences, Signal,Signal Peptide, Leader,Signal Peptides, Leader,Signal Sequence,Signal, Protein Sorting,Signals, Protein Sorting,Sorting Signal, Protein,Sorting Signals, Protein
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

A Ciechanover, and H Gonen, and S Elias, and A Mayer
January 1993, Brain pathology (Zurich, Switzerland),
A Ciechanover, and H Gonen, and S Elias, and A Mayer
February 1994, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
A Ciechanover, and H Gonen, and S Elias, and A Mayer
January 2013, Klinicka onkologie : casopis Ceske a Slovenske onkologicke spolecnosti,
A Ciechanover, and H Gonen, and S Elias, and A Mayer
January 1984, Journal of cellular biochemistry,
A Ciechanover, and H Gonen, and S Elias, and A Mayer
April 2001, The Journal of biological chemistry,
A Ciechanover, and H Gonen, and S Elias, and A Mayer
December 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
A Ciechanover, and H Gonen, and S Elias, and A Mayer
November 2015, Cellular & molecular immunology,
A Ciechanover, and H Gonen, and S Elias, and A Mayer
August 1996, Cell,
A Ciechanover, and H Gonen, and S Elias, and A Mayer
December 2005, Bone,
A Ciechanover, and H Gonen, and S Elias, and A Mayer
November 2008, The European journal of neuroscience,
Copied contents to your clipboard!