Computer modeling studies of ribonuclease T1-guanosine monophosphate complexes. 1990

P V Balaji, and W Saenger, and V S Rao
Molecular Biophysics Unit, Indian Institute of Science, Bangalore.

The three-dimensional structures of ribonuclease (RNase) T1 complexes with the inhibitors 2'-guanylic acid (2'-GMP), 3'-guanylic acid (3'-GMP), and 5'-guanylic acid (5'-GMP) were predicted by energy minimization studies. It is shown that these inhibitors can bind to RNase T1 in either of the ribose puckered conformations (C2'-endo and C3'-endo) in solid state and exist in significant amounts in both forms in solution. These studies are in agreement with the x-ray crystallographic studies of the 2'-GMP-Lys25-RNase T1 complex, where the inhibitor binds in C2'-endo puckered conformation. These results are also in good agreement with the available 1H-nmr results of Inagaki et al. [(1985) Biochemistry 24, 1013-1020], but differ from their conclusions where the authors favor only the C3'-endo ribose conformation for all the three inhibitors. The calculations explain the apparent discrepancies in the conclusions drawn by x-ray crystallographic and spectroscopic studies. An extensive hydrogen-bonding scheme was predicted in all the three complexes. The hydrogen-bonding scheme predicted for the 2'-GMP (C2'-endo)-RNase T1 complex agrees well with those reported from x-ray crystallographic studies. In all three complexes the base and the phosphate bind in nearly identical sites independent of the position of the phosphate or the ribose pucker. The glycosyl torsion angle favors a value in the +syn range in the 2'-GMP (C2'-endo)-RNase T1, 3'-GMP (C2'-endo)-RNase T1, and 3'-GMP (C3'-endo)-RNase T1 complexes; in the high-syn range in the 2'-GMP (C3'-endo)-RNase T1 complex; and in the -syn range in the 5'-GMP (C2'-endo)-RNase T1 and 5'-GMP (C3'-endo)-RNase T1 complexes. These results are in agreement with experimental studies showing that the inhibitory power decreases in the order 2'-GMP greater than 3'-GMP greater than 5'-GMP, and they also explain the high pKa value observed for Glu58 in the 2'-GMP-RNase T1 complex.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D006157 Guanosine Monophosphate A guanine nucleotide containing one phosphate group esterified to the sugar moiety and found widely in nature. 5'-Guanylic Acid,Guanosine 5'-Monophosphate,5'-GMP,Guanylic Acid,5' Guanylic Acid,5'-Monophosphate, Guanosine,Acid, 5'-Guanylic,Acid, Guanylic,Guanosine 5' Monophosphate,Monophosphate, Guanosine
D006163 Ribonuclease T1 An enzyme catalyzing the endonucleolytic cleavage of RNA at the 3'-position of a guanylate residue. EC 3.1.27.3. Guanyloribonuclease,RNase T1,Ribonuclease N1,Aspergillus oryzae Ribonuclease,Guanyl-Specific RNase,RNase Apl,RNase F1,RNase Pch 1,RNase ST,Ribonuclease F1,Ribonuclease F2,Ribonuclease ST,Ribonuclease T-1,T 1 RNase,Guanyl Specific RNase,RNase, Guanyl-Specific,RNase, T 1,Ribonuclease T 1,Ribonuclease, Aspergillus oryzae
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

P V Balaji, and W Saenger, and V S Rao
April 1992, Journal of biomolecular structure & dynamics,
P V Balaji, and W Saenger, and V S Rao
October 1993, Journal of biomolecular structure & dynamics,
P V Balaji, and W Saenger, and V S Rao
August 1977, Biochemical and biophysical research communications,
P V Balaji, and W Saenger, and V S Rao
October 1992, Biochimica et biophysica acta,
P V Balaji, and W Saenger, and V S Rao
July 1970, Journal of biochemistry,
P V Balaji, and W Saenger, and V S Rao
January 1991, Indian journal of biochemistry & biophysics,
P V Balaji, and W Saenger, and V S Rao
July 1970, Journal of biochemistry,
P V Balaji, and W Saenger, and V S Rao
January 1983, Nucleic acids symposium series,
P V Balaji, and W Saenger, and V S Rao
October 1969, Biochemical and biophysical research communications,
Copied contents to your clipboard!