Apoptotic gene expression by human periodontal ligament cells following cyclic stretch. 2011

C Xu, and Y Hao, and B Wei, and J Ma, and J Li, and Q Huang, and F Zhang
Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. imxuchun@163.com

OBJECTIVE Periodontal ligament cells play an important role in maintaining homeostasis of periodontal tissue upon mechanical force loading caused by mastication or orthodontic force. Previous studies revealed force-driven periodontal ligament cell death via apoptosis, but the force-sensing genes assigned to the apoptotic pathway have not been fully characterized. The present study aimed to identify force-sensing genes implicated in the apoptotic pathway in periodontal ligament cells. METHODS Human periodontal ligament cells were exposed to 20% stretch strain for 6 or 24 h, and the differential expression of 84 genes implicated in the apoptotic pathway were quantified by real-time PCR array technology. RESULTS Ten and 11 genes showed upregulated expression after 6 and 24 h stretches, respectively, and there were two downregulated genes in response to both 6 and 24 h stretches. These genes included those encoding the tumor necrosis factor ligand family (TNFSF8), tumor necrosis factor receptor family (FAS, TNFRSF10B, TNFRSF11B, TNFRSF25 and CD27), the Bcl-2 family (BAG3, BAK1, BCL2L11 and BCLAF1), the caspase family (CASP5 and CASP7), the inhibitor of apoptosis proteins family (BIRC3, BIRC6 and NAIP), the caspase recruitment domain family (RIPK2 and PYCARD) and the death domain family (DAPK1), as well as an oncogene (BRAF). CONCLUSIONS This study identified several force-sensing genes implicated in the apoptotic pathway in periodontal ligament cells and should facilitate future studies on force-driven apoptosis by providing putative target genes.

UI MeSH Term Description Entries
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D010513 Periodontal Ligament The fibrous CONNECTIVE TISSUE surrounding the TOOTH ROOT, separating it from and attaching it to the alveolar bone (ALVEOLAR PROCESS). Alveolodental Ligament,Alveolodental Membrane,Gomphosis,Alveolodental Ligaments,Alveolodental Membranes,Gomphoses,Ligament, Alveolodental,Ligament, Periodontal,Membrane, Alveolodental,Periodontal Ligaments
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D003799 Dental Stress Analysis The description and measurement of the various factors that produce physical stress upon dental restorations, prostheses, or appliances, materials associated with them, or the natural oral structures. Analyses, Dental Stress,Analysis, Dental Stress,Stress Analyses, Dental,Stress Analysis, Dental,Dental Stress Analyses
D005260 Female Females
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D013718 Tensile Strength The maximum stress a material subjected to a stretching load can withstand without tearing. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed, p2001) Strength, Tensile,Strengths, Tensile,Tensile Strengths

Related Publications

C Xu, and Y Hao, and B Wei, and J Ma, and J Li, and Q Huang, and F Zhang
December 2007, Journal of dental research,
C Xu, and Y Hao, and B Wei, and J Ma, and J Li, and Q Huang, and F Zhang
March 2015, Archives of oral biology,
C Xu, and Y Hao, and B Wei, and J Ma, and J Li, and Q Huang, and F Zhang
October 2017, Acta odontologica Scandinavica,
C Xu, and Y Hao, and B Wei, and J Ma, and J Li, and Q Huang, and F Zhang
July 2015, Gene,
C Xu, and Y Hao, and B Wei, and J Ma, and J Li, and Q Huang, and F Zhang
January 2017, Archives of oral biology,
C Xu, and Y Hao, and B Wei, and J Ma, and J Li, and Q Huang, and F Zhang
June 2024, Materials today. Bio,
C Xu, and Y Hao, and B Wei, and J Ma, and J Li, and Q Huang, and F Zhang
January 2012, Gene,
C Xu, and Y Hao, and B Wei, and J Ma, and J Li, and Q Huang, and F Zhang
January 2018, BioMed research international,
C Xu, and Y Hao, and B Wei, and J Ma, and J Li, and Q Huang, and F Zhang
June 2007, Cell and tissue research,
C Xu, and Y Hao, and B Wei, and J Ma, and J Li, and Q Huang, and F Zhang
November 2019, Archives of oral biology,
Copied contents to your clipboard!