Effect of physical training on the responses of serum adrenocorticotropic hormone during prolonged exhausting exercise. 1990

I Tabata, and Y Atomi, and Y Mutoh, and M Miyashita
Laboratory for Exercise Physiology and Biomechanics, Faculty of Education, University of Tokyo, Japan.

The purpose of this study was to investigate the effects of physical training on the responses of serum adrenocorticotropic hormone (ACTH) and cortisol concentration during low-intensity prolonged exercise. Five subjects who had fasted for 12 h cycled at the same absolute intensity that elicited 50% of pre-training maximal oxygen uptake (VO2max), either until exhaustion or for up to 3 h, before and after 7 weeks of vigorous physical training [mean daily energy consumption during training exercise, 531 kcal (2230 kJ)]. In the pretraining test, serum ACTH and cortisol concentrations did not increase during the early part of the exercise. Increases in concentrations of both hormones occurred in all subjects when blood glucose concentration decreased during the later phase of the exercise. The mean values and SEM of serum ACTH and cortisol concentrations at the end of the exercise were 356 ng.l-1, SEM 79 and 438 micrograms.l-1, SEM 36, respectively. After the physical training, VO2max of the subjects improved significantly from the mean value of 50.2 ml.kg-1.min-1, SEM 2.5 to 57.3 ml.kg-1.min-1, SEM 2.0 (P less than 0.05). In the post-training test, exercise time to exhaustion was prolonged in three subjects. Comparing the pre- and post training values observed after the same length of time that the subjects had exercised in the pre-training test, the post-training values of serum ACTH (44 ng.l-1, SEM 3) and cortisol (167 micrograms.l-1, SEM 30) concentration were less than the pre-training value (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010806 Physical Education and Training Instructional programs in the care and development of the body, often in schools. The concept does not include prescribed exercises, which is EXERCISE THERAPY. Education, Physical,Physical Education,Physical Education, Training
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006854 Hydrocortisone The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Cortef,Cortisol,Pregn-4-ene-3,20-dione, 11,17,21-trihydroxy-, (11beta)-,11-Epicortisol,Cortifair,Cortril,Epicortisol,Hydrocortisone, (11 alpha)-Isomer,Hydrocortisone, (9 beta,10 alpha,11 alpha)-Isomer,11 Epicortisol
D000324 Adrenocorticotropic Hormone An anterior pituitary hormone that stimulates the ADRENAL CORTEX and its production of CORTICOSTEROIDS. ACTH is a 39-amino acid polypeptide of which the N-terminal 24-amino acid segment is identical in all species and contains the adrenocorticotrophic activity. Upon further tissue-specific processing, ACTH can yield ALPHA-MSH and corticotrophin-like intermediate lobe peptide (CLIP). ACTH,Adrenocorticotropin,Corticotropin,1-39 ACTH,ACTH (1-39),Adrenocorticotrophic Hormone,Corticotrophin,Corticotrophin (1-39),Corticotropin (1-39),Hormone, Adrenocorticotrophic,Hormone, Adrenocorticotropic
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D015444 Exercise Physical activity which is usually regular and done with the intention of improving or maintaining PHYSICAL FITNESS or HEALTH. Contrast with PHYSICAL EXERTION which is concerned largely with the physiologic and metabolic response to energy expenditure. Aerobic Exercise,Exercise, Aerobic,Exercise, Isometric,Exercise, Physical,Isometric Exercise,Physical Activity,Acute Exercise,Exercise Training,Activities, Physical,Activity, Physical,Acute Exercises,Aerobic Exercises,Exercise Trainings,Exercise, Acute,Exercises,Exercises, Acute,Exercises, Aerobic,Exercises, Isometric,Exercises, Physical,Isometric Exercises,Physical Activities,Physical Exercise,Physical Exercises,Training, Exercise,Trainings, Exercise

Related Publications

I Tabata, and Y Atomi, and Y Mutoh, and M Miyashita
February 1970, Acta physiologica Scandinavica,
I Tabata, and Y Atomi, and Y Mutoh, and M Miyashita
February 1975, Experientia,
I Tabata, and Y Atomi, and Y Mutoh, and M Miyashita
January 1980, Acta physiologica Polonica,
I Tabata, and Y Atomi, and Y Mutoh, and M Miyashita
February 1982, Metabolism: clinical and experimental,
I Tabata, and Y Atomi, and Y Mutoh, and M Miyashita
January 1977, Acta physiologica Polonica,
I Tabata, and Y Atomi, and Y Mutoh, and M Miyashita
August 1993, Acta endocrinologica,
I Tabata, and Y Atomi, and Y Mutoh, and M Miyashita
April 1988, Medicine and science in sports and exercise,
I Tabata, and Y Atomi, and Y Mutoh, and M Miyashita
November 1972, Journal of applied physiology,
I Tabata, and Y Atomi, and Y Mutoh, and M Miyashita
March 2018, Journal of pharmaceutical and biomedical analysis,
I Tabata, and Y Atomi, and Y Mutoh, and M Miyashita
March 1984, Clinics in chest medicine,
Copied contents to your clipboard!