Transcriptional modulation of monoaminergic neurotransmission genes by the histone deacetylase inhibitor trichostatin A in neuroblastoma cells. 2012

Melinda Bence, and Julia Koller, and Maria Sasvari-Szekely, and Gergely Keszler
Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, POB 260, Budapest 1444, Hungary.

Histone deacetylase inhibitors are promising anti-tumor agents partly due to their ability to disrupt the hypoxic signaling pathway in human malignancies. However, little is known about any effects of these drugs on the central nervous system. The aim of the present study was to analyze the effects of trichostatin A (TSA)--a broad-spectrum histone deacetylase inhibitor--on the transcriptional regulation of several genes involved in dopamine- and serotonergic neurotransmission. To this end, short-term parallel cultures of SK-NF-I neuroblastoma cells were treated with TSA either alone or in combination with hypoxia, and mRNA levels of dopamine receptor D3 (DRD3) and D4 (DRD4), dopamine transporter (DAT), dopamine hydroxylase (DBH), dopamine receptor regulating factor (DRRF), catechol-O-methyltransferase (COMT), serotonin receptor 1A (HTR1A), monoamino oxidase A (MAO-A), serotonin transporter (SLC6A4) and tryptophan hydroxylase 2 (TPH2) were determined by quantitative PCR. We found that TSA did not antagonize the hypoxia-induced activation of D3 and D4 dopamine receptor genes, implying that induction of these genes is not mediated directly by hypoxia inducible factor-1alpha. On the other hand, TSA dramatically upregulated the expression of DAT and SLC6A4 (45-fold and 15-fold, respectively), while transcript levels of MAO-A and COMT were significantly reduced (by 70% and by more than 90%, respectively). Induction of DAT protein expression was detected by western blotting. These results suggest that inhibition of histone deacetylases might help restore presynaptic monoamine pools via suppression of catecholamine breakdown and facilitation of monoamine reuptake in neurons.

UI MeSH Term Description Entries
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D002394 Catechol O-Methyltransferase Enzyme that catalyzes the movement of a methyl group from S-adenosylmethionone to a catechol or a catecholamine. Catechol Methyltransferase,Catechol-O-Methyltransferase,Catechol O Methyltransferase,Methyltransferase, Catechol,O-Methyltransferase, Catechol
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006877 Hydroxamic Acids A class of weak acids with the general formula R-CONHOH. Hydroxamic Acid,Acid, Hydroxamic,Acids, Hydroxamic
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015306 Biogenic Monoamines Biogenic amines having only one amine moiety. Included in this group are all natural monoamines formed by the enzymatic decarboxylation of natural amino acids. Monoamines, Biogenic
D015533 Transcriptional Activation Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes. Gene Activation,Genetic Induction,Transactivation,Induction, Genetic,Trans-Activation, Genetic,Transcription Activation,Activation, Gene,Activation, Transcription,Activation, Transcriptional,Genetic Trans-Activation,Trans Activation, Genetic

Related Publications

Melinda Bence, and Julia Koller, and Maria Sasvari-Szekely, and Gergely Keszler
December 2014, Molecular medicine reports,
Melinda Bence, and Julia Koller, and Maria Sasvari-Szekely, and Gergely Keszler
July 2010, Molecular cancer,
Melinda Bence, and Julia Koller, and Maria Sasvari-Szekely, and Gergely Keszler
July 2005, Journal of neuroimmunology,
Melinda Bence, and Julia Koller, and Maria Sasvari-Szekely, and Gergely Keszler
June 2010, Chronobiology international,
Melinda Bence, and Julia Koller, and Maria Sasvari-Szekely, and Gergely Keszler
January 2012, Asian Pacific journal of cancer prevention : APJCP,
Melinda Bence, and Julia Koller, and Maria Sasvari-Szekely, and Gergely Keszler
June 2007, Neoplasia (New York, N.Y.),
Melinda Bence, and Julia Koller, and Maria Sasvari-Szekely, and Gergely Keszler
September 2004, Apoptosis : an international journal on programmed cell death,
Melinda Bence, and Julia Koller, and Maria Sasvari-Szekely, and Gergely Keszler
July 2014, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine,
Melinda Bence, and Julia Koller, and Maria Sasvari-Szekely, and Gergely Keszler
April 2006, Molecular and cellular probes,
Melinda Bence, and Julia Koller, and Maria Sasvari-Szekely, and Gergely Keszler
December 2010, Molecular biology reports,
Copied contents to your clipboard!