Purification and properties of acetate kinase from Acholeplasma laidlawii. 1979

I Kahane, and A Muhlrad

Acetate kinase (EC 2.7.2.1) was purified from Acholeplasma laidlawii cytoplasm by a combination of ammonium sulfate fractionation, gel filtration, diethylaminoethyl-cellulose chromatography, and affinity chromatography on 8-(6-aminohexylamino)-adenosine 5'-triphosphate conjugated to Sepharose 4B. The enzyme was composed of polypeptide chains of about 50,000 molecular weight as estimated from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Under nondenaturating conditions, apparent molecular weights between 64,000 and 130,000 were obtained, depending upon mainly the ionic strength of the test solution. The enzyme had a narrow specificity for phosphate acceptor acids, whereas both purine and pyrimidine nucleoside triphosphates were suitable phosphate donors. Na(+) and K(+) inhibited both acetyl phosphate and adenosine 5'-triphosphate synthesis, and the latter was also inhibited by high concentrations of adenosine 5'-diphosphate and acetyl phosphate. This substrate inhibition was partially abolished by 0.5 M NaCl. The enzyme catalyzed the independent adenosine 5'-diphosphate<-->adenosine 5'-triphosphate and acetate<-->acetyl phosphate exchanges. The rate of the latter was enhanced by the addition of cosubstrate Mg(2+)-adenosine 5'-triphosphate. The high affinity for substrates, except for acetate, indicated that under physiological conditions the direction of the enzymic reaction favors adenosine 5'-triphosphate synthesis. Thus, a mechanism for adenosine 5'-triphosphate generation in mycoplasmas is suggested.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009180 Mycoplasmatales Infections Infections with bacteria of the order MYCOPLASMATALES. Infections, Mycoplasmatales,Infection, Mycoplasmatales,Mycoplasmatales Infection
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000084 Acetate Kinase An enzyme that catalyzes reversibly the phosphorylation of acetate in the presence of a divalent cation and ATP with the formation of acetylphosphate and ADP. It is important in the glycolysis process. EC 2.7.2.1. Acetokinase,Kinase, Acetate
D000128 Acholeplasma laidlawii An organism originally isolated from sewage, manure, humus, and soil, but recently found as a parasite in mammals and birds. Mycoplasma laidlawii
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

I Kahane, and A Muhlrad
October 1983, Journal of bacteriology,
I Kahane, and A Muhlrad
May 1984, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
I Kahane, and A Muhlrad
March 1974, Canadian journal of microbiology,
I Kahane, and A Muhlrad
October 1975, Infection and immunity,
I Kahane, and A Muhlrad
July 1984, Journal of bacteriology,
I Kahane, and A Muhlrad
January 1980, Biokhimiia (Moscow, Russia),
I Kahane, and A Muhlrad
October 1983, Biochimica et biophysica acta,
I Kahane, and A Muhlrad
October 1984, Biochimica et biophysica acta,
Copied contents to your clipboard!