Activation/inactivation and uni-site catalysis by the reconstituted ATP-synthase from chloroplasts. 1990

P Fromme, and P Gräber
Max-Volmer-Institut für Biophysikalische und Physikalische Chemie, Technische Universität Berlin (Germany).

The proton-translocating ATP-synthase of chloroplasts, CF0F1, was isolated and reconstituted into asolectin liposomes. CF0F1 can exist in at least four different states, oxidized or reduced, either inactive or active. These states are characterized by different kinetics of ADP binding: There is no binding of ADP to the inactive, oxidized state, the rate constant for ADP binding to the inactive, reduced states is 7.10(2) M-1.s-1. ADP binding to the active, reduced state occurs under deenergized conditions with 10(5) M-1.s-1 and transforms the enzyme into the inactive, reduced state. Parallel to the ADP-dependent inactivation, the enzyme can also inactivate without ADP binding with a first-order rate constant of 7.10(-3) M-1.s-1. With the active, reduced enzyme ATP-hydrolysis was measured under uni-site conditions as has been carried out with MF1 (Grubmeyer, C., Cross, R.C. and Penefsky, H.S. (1982) J. Biol. Chem. 257, 12092-12100). The rate constant for ATP binding is 10(6) M-1.s-1, the 'equilibrium constant' on the enzyme EADPPi/EATP is 0.4. The rate constants for Pi release and ADP release are 0.2 s-1 and o.1 s-1, respectively. This indicates that the enzyme carries out a complete turnover under uni-site conditions with rates much higher than that reported for MF1.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

P Fromme, and P Gräber
January 1992, Acta physiologica Scandinavica. Supplementum,
P Fromme, and P Gräber
February 2002, FEBS letters,
P Fromme, and P Gräber
May 2000, Biochimica et biophysica acta,
P Fromme, and P Gräber
June 1989, Journal of protein chemistry,
P Fromme, and P Gräber
September 1993, Biochimica et biophysica acta,
P Fromme, and P Gräber
January 1988, Zeitschrift fur Naturforschung. C, Journal of biosciences,
P Fromme, and P Gräber
April 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Copied contents to your clipboard!