Conditional hyporecombination mutants of three REC genes of Saccharomyces cerevisiae. 1990

M S Esposito, and J T Brown
Cell and Molecular Biology Division, Lawrence Berkeley Laboratory, University of California, Berkeley 94720.

We have isolated and characterized three conditional hyporecombination mutants, rec1-1, rec3-1 and rec4-1, that define three REC genes of Saccharomyces cerevisiae required for spontaneous general mitotic interchromosomal recombination. Each MATa/MAT alpha rec/rec diploid is deficient in mitotic single site gene conversion, intragenic recombination, intergenic recombination and sporulation at the restrictive temperature (36 degrees C). The rec1-1 mutation also confers conditional enhanced sensitivity to the killing effects of X-rays. The rec1-1 and rec3-1 mutations have been mapped to chromosome VII. The rec1-1, rec3-1 and rec4-1 mutations exhibit complementation at 36 degrees C for both mitotic recombination and sporulation.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004171 Diploidy The chromosomal constitution of cells, in which each type of CHROMOSOME is represented twice. Symbol: 2N or 2X. Diploid,Diploid Cell,Cell, Diploid,Cells, Diploid,Diploid Cells,Diploidies,Diploids
D005785 Gene Conversion The asymmetrical segregation of genes during replication which leads to the production of non-reciprocal recombinant strands and the apparent conversion of one allele into another. Thus, e.g., the meiotic products of an Aa individual may be AAAa or aaaA instead of AAaa, i.e., the A allele has been converted into the a allele or vice versa. Polar Recombination,Polaron,Conversion, Gene,Conversions, Gene,Gene Conversions,Polar Recombinations,Polarons,Recombination, Polar,Recombinations, Polar
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013172 Spores, Fungal Reproductive bodies produced by fungi. Conidia,Fungal Spores,Conidium,Fungal Spore,Spore, Fungal

Related Publications

M S Esposito, and J T Brown
January 1984, Cold Spring Harbor symposia on quantitative biology,
M S Esposito, and J T Brown
September 1995, Journal of bacteriology,
M S Esposito, and J T Brown
October 1984, Journal of bacteriology,
M S Esposito, and J T Brown
January 1977, Genetics,
M S Esposito, and J T Brown
May 1967, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
M S Esposito, and J T Brown
January 1978, Genetics,
M S Esposito, and J T Brown
November 1972, Journal of bacteriology,
Copied contents to your clipboard!