Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12. 1990

L L Parker, and B G Hall
Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269.

Wild-type Escherichia coli are not able to utilize beta-glucoside sugars because the genes for utilization of these sugars are cryptic. Spontaneous mutations in the cel operon allow its expression and enable the organism to ferment cellobiose, arbutin and salicin. In this report we describe the structure and nucleotide sequence of the cel operon. The cel operon consists of five genes: celA, whose function is unknown; celB and celC which encode phosphoenolpyruvate-dependent phosphotransferase system enzyme IIcel and enzyme IIIcel, respectively, for the transport and phosphorylation of beta-glucoside sugars; celD, which encodes a negative regulatory protein; and celF, which encodes a phospho-beta-glucosidase that acts on phosphorylated cellobiose, arbutin and salicin. The mutationally activated cel operon is induced in the presence of its substrates, and is repressed in their absence. A comparison of proteins encoded by the cel operon with functionally equivalent proteins of the bgl operon, another cryptic E. coli gene system responsible for the catabolism of beta-glucoside sugars, revealed no significant homology between these two systems despite common functional characteristics. The celD and celF encoded repressor and phospho-beta-glucosidase proteins are homologous to the melibiose regulatory protein and to the melA encoded alpha-galactosidase of E. coli, respectively. Furthermore, the celC encoded PEP-dependent phosphotransferase system enzyme IIIcel is strikingly homologous to an enzyme IIIlac of the Gram-positive organism Staphylococcus aureus. We conclude that the genes for these two enzyme IIIs diverged much more recently than did their hosts, indicating that E. coli and S. aureus have undergone relatively recent exchange of chromosomal genes.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010731 Phosphoenolpyruvate Sugar Phosphotransferase System The bacterial sugar phosphotransferase system (PTS) that catalyzes the transfer of the phosphoryl group from phosphoenolpyruvate to its sugar substrates (the PTS sugars) concomitant with the translocation of these sugars across the bacterial membrane. The phosphorylation of a given sugar requires four proteins, two general proteins, Enzyme I and HPr and a pair of sugar-specific proteins designated as the Enzyme II complex. The PTS has also been implicated in the induction of synthesis of some catabolic enzyme systems required for the utilization of sugars that are not substrates of the PTS as well as the regulation of the activity of ADENYLYL CYCLASES. EC 2.7.1.-. Phosphoenolpyruvate Hexose Phosphotransferases,Phosphoenolpyruvate-Glycose Phosphotransferase System,Hexose Phosphotransferases, Phosphoenolpyruvate,Phosphoenolpyruvate Glycose Phosphotransferase System,Phosphotransferase System, Phosphoenolpyruvate-Glycose,Phosphotransferases, Phosphoenolpyruvate Hexose,System, Phosphoenolpyruvate-Glycose Phosphotransferase
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002475 Cellobiose A disaccharide consisting of two glucose units in beta (1-4) glycosidic linkage. Obtained from the partial hydrolysis of cellulose. 4-O-beta-D-Glucopyranosyl-D-glucopyranose,4 O beta D Glucopyranosyl D glucopyranose
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004187 Disaccharides Oligosaccharides containing two monosaccharide units linked by a glycosidic bond. Disaccharide
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

L L Parker, and B G Hall
July 1987, The Journal of biological chemistry,
L L Parker, and B G Hall
June 1994, Journal of molecular biology,
L L Parker, and B G Hall
October 1991, Molecular & general genetics : MGG,
L L Parker, and B G Hall
March 1987, Nucleic acids research,
L L Parker, and B G Hall
October 1988, The Journal of biological chemistry,
L L Parker, and B G Hall
November 1988, Molecular & general genetics : MGG,
L L Parker, and B G Hall
July 1989, Nucleic acids research,
Copied contents to your clipboard!