Disruption of the actin cytoskeleton in yeast capping protein mutants. 1990

J F Amatruda, and J F Cannon, and K Tatchell, and C Hug, and J A Cooper
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110.

Capping protein controls the addition of actin subunits to the barbed end of actin filaments and nucleates actin polymerization in vitro. Capping protein has been identified in all eukaryotic cells examined so far; it is a heterodimer with subunits of relative molecular masses 32,000-36,000 (alpha-subunit) and 28,000-32,000 (beta-subunit). In skeletal muscle, capping protein (CapZ) probably binds the barbed ends of actin filaments at the Z line. The in vivo role of this protein in non-muscle cells is not known. We report here the characterization of CAP2, the single gene encoding the beta-subunit of capping protein in Saccharomyces cerevisiae. Yeast cells in which the CAP2 gene was disrupted by an insertion or a deletion had an abnormal actin distribution, including the loss of actin cables. The mutant cells were round and large, with a heterogeneous size distribution, and, although viable, grew more slowly than congenic wild-type cells. Chitin, a cell wall component restricted to the mother-bud junction in wild-type budding yeast, was found on the entire mother cell surface in the mutants. The phenotype of CAP2 disruption resembled that of temperature-sensitive mutations in the yeast actin gene ACT1, indicating that capping protein regulates actin-filament distribution in vivo.

UI MeSH Term Description Entries
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D002686 Chitin A linear polysaccharide of beta-1->4 linked units of ACETYLGLUCOSAMINE. It is the second most abundant biopolymer on earth, found especially in INSECTS and FUNGI. When deacetylated it is called CHITOSAN.
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

J F Amatruda, and J F Cannon, and K Tatchell, and C Hug, and J A Cooper
November 2001, Molecular biology of the cell,
J F Amatruda, and J F Cannon, and K Tatchell, and C Hug, and J A Cooper
January 2024, The Journal of cell biology,
J F Amatruda, and J F Cannon, and K Tatchell, and C Hug, and J A Cooper
February 1994, Current opinion in cell biology,
J F Amatruda, and J F Cannon, and K Tatchell, and C Hug, and J A Cooper
March 2014, FEMS microbiology reviews,
J F Amatruda, and J F Cannon, and K Tatchell, and C Hug, and J A Cooper
August 2006, Genes to cells : devoted to molecular & cellular mechanisms,
J F Amatruda, and J F Cannon, and K Tatchell, and C Hug, and J A Cooper
June 1998, Journal of cell science,
J F Amatruda, and J F Cannon, and K Tatchell, and C Hug, and J A Cooper
August 1997, Molecular biology of the cell,
J F Amatruda, and J F Cannon, and K Tatchell, and C Hug, and J A Cooper
May 2010, Cell death and differentiation,
J F Amatruda, and J F Cannon, and K Tatchell, and C Hug, and J A Cooper
April 1995, Microbiology (Reading, England),
J F Amatruda, and J F Cannon, and K Tatchell, and C Hug, and J A Cooper
September 1993, Molecular biology of the cell,
Copied contents to your clipboard!