Paraoxonase 1 (PON1) inhibits monocyte-to-macrophage differentiation. 2011

Mira Rosenblat, and Nina Volkova, and John Ward, and Michael Aviram
The Lipid Research Laboratory, Technion Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Rambam Medical Center, Haifa, Israel.

OBJECTIVE To analyze paraoxonase 1 (PON1) effect on monocyte-to-macrophage differentiation. RESULTS THP-1 monocytic cell-line and mouse peritoneal macrophages (MPM) were studied. Markers for monocytes differentiation included: morphological changes, CD11b and CD36 expression, and cellular oxidative stress. PON1KO MPM were more differentiated than control C57BL/6 MPM. Intraperitoneal injection of recombinant PON1 (rePON1) to C57BL/6 or to PON1KO mice significantly increased serum, MPM, and tissues PON1 activities. These effects were associated with a significant decrease in CD11b in C57BL/6 and PON1KO MPM (by 21% and 35%, respectively), in CD36 (by 35% and 38%, respectively), and in cellular total peroxides content (by 18% and 20%, respectively). rePON1 also significantly inhibited CD11b and CD36 expression, and cellular total peroxides during PMA-induced THP-1 monocytes differentiation, by 68%, 56% and 53%, respectively. Similar effects were observed upon using reconstituted HDL (rHDL) +rePON1, or human HDL +rePON1, in comparison to rHDL or to human HDL, as well as, HDL from C57BL/6 vs. PON1KO mice. Inhibition of monocyte-to-macrophage differentiation was demonstrated also by several dietary antioxidants such as vitamin E, gallic acid, or punicalagin (the major polyphenol in pomegranate). Whereas NADPH oxidase was not involved in PON1 anti-differentiation effect, mitochondrial complex I could be involved, as rotenone (complex I inhibitor) significantly decreased (by 77%) the expression of CD11b during THP-1 differentiation. Finally, blocking PON1 sulfhydryl group with N-ethylmalemide significantly attenuated PON1 inhibitory effect on THP-I monocyte-to-macrophage differentiation. CONCLUSIONS HDL-associated PON1 inhibits monocyte-to-macrophage differentiation, and this effect could be related to PON1 peroxidase-like activity which involves its free sulfhydryl group.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010545 Peroxides A group of compounds that contain a bivalent O-O group, i.e., the oxygen atoms are univalent. They can either be inorganic or organic in nature. Such compounds release atomic (nascent) oxygen readily. Thus they are strong oxidizing agents and fire hazards when in contact with combustible materials, especially under high-temperature conditions. The chief industrial uses of peroxides are as oxidizing agents, bleaching agents, and initiators of polymerization. (From Hawley's Condensed Chemical Dictionary, 11th ed) Peroxide
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005707 Gallic Acid A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. 3,4,5-Trihydroxybenzoic Acid,Acid, Gallic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D014810 Vitamin E A generic descriptor for all TOCOPHEROLS and TOCOTRIENOLS that exhibit ALPHA-TOCOPHEROL activity. By virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus, these compounds exhibit varying degree of antioxidant activity, depending on the site and number of methyl groups and the type of ISOPRENOIDS.

Related Publications

Mira Rosenblat, and Nina Volkova, and John Ward, and Michael Aviram
November 2008, Biochemical and biophysical research communications,
Mira Rosenblat, and Nina Volkova, and John Ward, and Michael Aviram
June 2013, Atherosclerosis,
Mira Rosenblat, and Nina Volkova, and John Ward, and Michael Aviram
July 2005, Atherosclerosis,
Mira Rosenblat, and Nina Volkova, and John Ward, and Michael Aviram
June 1998, Blood,
Mira Rosenblat, and Nina Volkova, and John Ward, and Michael Aviram
August 2001, Immunobiology,
Mira Rosenblat, and Nina Volkova, and John Ward, and Michael Aviram
February 2009, Toxicology and applied pharmacology,
Mira Rosenblat, and Nina Volkova, and John Ward, and Michael Aviram
March 2014, BMC veterinary research,
Mira Rosenblat, and Nina Volkova, and John Ward, and Michael Aviram
January 2009, Journal of toxicology and environmental health. Part B, Critical reviews,
Mira Rosenblat, and Nina Volkova, and John Ward, and Michael Aviram
March 2003, Free radical biology & medicine,
Mira Rosenblat, and Nina Volkova, and John Ward, and Michael Aviram
January 2011, Free radical biology & medicine,
Copied contents to your clipboard!