Epithelial polarity and morphogenesis. 2011

Daniel St Johnston, and Bénédicte Sanson
The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, United Kingdom. d.stjohnston@gurdon.cam.ac.uk

The adult form of a multicellular organism is shaped by a series of morphogenetic processes that organise the body into tissues and organs. Most of these events involve the deformation of sheets of epithelial cells that are highly polarised along their apical-basal axes and attached to each other by lateral junctions. Here we discuss the role played by modifications in the apical-basal polarity system in driving morphogenesis, with an emphasis on well-characterised events during Drosophila development. Changing the activity of polarity factors can alter the relative sizes of the apical, lateral and basal domains. This can drive transitions between cuboidal, columnar and squamous epithelial morphologies, to increase or decrease the surface area of an epithelial sheet. These changes can also cause epithelial cells to become wedge-shaped, which can drive tissue bending and invagination. In addition, it has recently emerged that the activity of apical-basal polarity factors can also be modulated in a planar polarised manner. By affecting the contractility of the actomyosin cytoskeleton and the stability of adherens junctions, changes within the plane of the epithelium can cause cell rearrangements that contribute to convergence and extension movements, boundary formation and cell alignment.

UI MeSH Term Description Entries
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000205 Actomyosin A protein complex of actin and MYOSINS occurring in muscle. It is the essential contractile substance of muscle.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D022005 Adherens Junctions Anchoring points where the CYTOSKELETON of neighboring cells are connected to each other. They are composed of specialized areas of the plasma membrane where bundles of the ACTIN CYTOSKELETON attach to the membrane through the transmembrane linkers, CADHERINS, which in turn attach through their extracellular domains to cadherins in the neighboring cell membranes. In sheets of cells, they form into adhesion belts (zonula adherens) that go all the way around a cell. Zonula Adherens,Adherens Junction,Adherens, Zonula,Junction, Adherens,Junctions, Adherens
D029721 Drosophila Proteins Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development. Drosophila melanogaster Proteins,Proteins, Drosophila,Proteins, Drosophila melanogaster,melanogaster Proteins, Drosophila

Related Publications

Daniel St Johnston, and Bénédicte Sanson
July 2003, Methods (San Diego, Calif.),
Daniel St Johnston, and Bénédicte Sanson
February 2013, Cold Spring Harbor perspectives in biology,
Daniel St Johnston, and Bénédicte Sanson
January 2017, Methods in cell biology,
Daniel St Johnston, and Bénédicte Sanson
April 2008, Current opinion in cell biology,
Daniel St Johnston, and Bénédicte Sanson
August 2010, Cold Spring Harbor perspectives in biology,
Daniel St Johnston, and Bénédicte Sanson
December 2007, Current opinion in microbiology,
Daniel St Johnston, and Bénédicte Sanson
June 2007, Cell,
Daniel St Johnston, and Bénédicte Sanson
January 2012, Annual review of cell and developmental biology,
Daniel St Johnston, and Bénédicte Sanson
January 2021, Frontiers in cell and developmental biology,
Daniel St Johnston, and Bénédicte Sanson
July 2003, Methods (San Diego, Calif.),
Copied contents to your clipboard!