Granule cell induction of 9-O-acetyl gangliosides on cerebellar glia in microcultures. 1990

R Mendez-Otero, and M Constantine-Paton
Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Brazil.

In previous studies we have shown that the expression of acetylated gangliosides recognized by the JONES monoclonal antibody is correlated with regions of cell migration in the developing rat nervous system. In this study we have investigated the expression of these gangliosides in two different types of cultures prepared from dissociated postnatal rat cerebella. In the first type, cells are plated after dissociation under conditions where most of the glial cells develop a stellate morphology that anchors neurons but does not support their migration. In the second type of culture, cells are plated in a ratio of four neurons to one glial cell and under these conditions the predominant form of astroglia is an elongate form that supports the migration of granule neurons. Granule neurons express JONES antigens in dissociated cell suspensions and in cultures in which cells are plated either after dissociation or in a 4:1 neuron:glia ratio. On the other hand, glial cells grown in the absence of neurons are JONES negative. In addition, the expression of JONES gangliosides by glial cells is different in the two types of culture. In cultures where the astroglial cells display the stellate morphology only a small proportion show JONES staining. Cultures in which the glial cells assume the elongate morphology have a significantly higher number of JONES-positive astroglia.

UI MeSH Term Description Entries
D008858 Microscopy, Phase-Contrast A form of interference microscopy in which variations of the refracting index in the object are converted into variations of intensity in the image. This is achieved by the action of a phase plate. Phase-Contrast Microscopy,Microscopies, Phase-Contrast,Microscopy, Phase Contrast,Phase Contrast Microscopy,Phase-Contrast Microscopies
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005732 Gangliosides A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997) Ganglioside,Sialoglycosphingolipids
D005904 Glial Fibrillary Acidic Protein An intermediate filament protein found only in glial cells or cells of glial origin. MW 51,000. Glial Intermediate Filament Protein,Astroprotein,GFA-Protein,Glial Fibrillary Acid Protein,GFA Protein
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R Mendez-Otero, and M Constantine-Paton
June 1992, The Journal of biological chemistry,
R Mendez-Otero, and M Constantine-Paton
January 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R Mendez-Otero, and M Constantine-Paton
March 2001, Molecular and cellular neurosciences,
R Mendez-Otero, and M Constantine-Paton
August 2023, Tetrahedron,
R Mendez-Otero, and M Constantine-Paton
March 1997, European journal of cell biology,
R Mendez-Otero, and M Constantine-Paton
January 1992, Neurochemical research,
R Mendez-Otero, and M Constantine-Paton
December 1977, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
R Mendez-Otero, and M Constantine-Paton
September 1999, Neurochemical research,
R Mendez-Otero, and M Constantine-Paton
November 1989, Journal of neurochemistry,
R Mendez-Otero, and M Constantine-Paton
January 2006, Developmental neuroscience,
Copied contents to your clipboard!