Proliferation-associated changes of Ca2+ transport in myeloid leukemic cell lines. 1990

A Rephaeli, and A Aviram, and E Rabizadeh, and M Shaklai
Hematology Division, Beilinson Medical Center, Petach Tikva, Israel.

Proliferation-associated changes in calcium metabolism were investigated employing the promyelocytic HL-60 and monoblastic U-937 cell lines. The cells were stimulated to proliferate employing mitogenic factors as follows. 1) Transferrin or insulin: HL-60 cells were adjusted for growth in serum-free medium, and 24 h prior to the experiment, the cells were deprived of transferrin or insulin. The re-addition of either one of them stimulated cell proliferation as was evident by increased [3H]-tymidine incorporation activity. Cell proliferation was associated with an enhanced Ca2+ influx rate, measured by 45Ca2+ uptake activity. 2) Granulocyte-monocyte colony-stimulating factor (GM-CSF): addition of GM-CSF to proliferating or quiescent HL-60 cells resulted in increased cell proliferation, which was also accompanied by increased rate of Ca2+ influx. 3) Serum: HL-60 and U-937 were grown for 24 h in serum-depleted medium. Re-addition of serum to the cells was not associated with immediate or delayed change in calcium influx rate but rather with an immediate increase in the cytosolic free calcium concentration, measured employing the fluorescent probe, fura-2AM. This increase was independent of extracellular calcium, unaffected by verapamil, diltiazem, and lanthanum, and associated with enhanced 45Ca2+ efflux. Thus, in all three cases evoked cell proliferation was accompanied by quantitative changes in Ca2+ metabolism. While the transferrin-, insulin-, and GM-CSF-stimulated cell proliferation was accompanied by delayed increases in 45Ca2+ influx, the serum-stimulated cell proliferation was accompanied by an immediate elevation of free cytosolic Ca2+.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007951 Leukemia, Myeloid Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites. Granulocytic Leukemia,Leukemia, Granulocytic,Leukemia, Myelocytic,Leukemia, Myelogenous,Myelocytic Leukemia,Myelogenous Leukemia,Myeloid Leukemia,Leukemia, Monocytic, Chronic,Monocytic Leukemia, Chronic,Chronic Monocytic Leukemia,Chronic Monocytic Leukemias,Granulocytic Leukemias,Leukemia, Chronic Monocytic,Leukemias, Chronic Monocytic,Leukemias, Granulocytic,Leukemias, Myelocytic,Leukemias, Myelogenous,Leukemias, Myeloid,Monocytic Leukemias, Chronic,Myelocytic Leukemias,Myelogenous Leukemias,Myeloid Leukemias
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003115 Colony-Stimulating Factors Glycoproteins found in a subfraction of normal mammalian plasma and urine. They stimulate the proliferation of bone marrow cells in agar cultures and the formation of colonies of granulocytes and/or macrophages. The factors include INTERLEUKIN-3; (IL-3); GRANULOCYTE COLONY-STIMULATING FACTOR; (G-CSF); MACROPHAGE COLONY-STIMULATING FACTOR; (M-CSF); and GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR; (GM-CSF). MGI-1,Macrophage-Granulocyte Inducer,Colony Stimulating Factor,Colony-Stimulating Factor,MGI-1 Protein,Myeloid Cell-Growth Inducer,Protein Inducer MGI,Cell-Growth Inducer, Myeloid,Colony Stimulating Factors,Inducer, Macrophage-Granulocyte,Inducer, Myeloid Cell-Growth,MGI 1 Protein,MGI, Protein Inducer,Macrophage Granulocyte Inducer,Myeloid Cell Growth Inducer
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

A Rephaeli, and A Aviram, and E Rabizadeh, and M Shaklai
February 1985, American journal of hematology,
A Rephaeli, and A Aviram, and E Rabizadeh, and M Shaklai
May 2012, Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi,
A Rephaeli, and A Aviram, and E Rabizadeh, and M Shaklai
December 1995, Experimental hematology,
A Rephaeli, and A Aviram, and E Rabizadeh, and M Shaklai
December 1982, Cancer research,
A Rephaeli, and A Aviram, and E Rabizadeh, and M Shaklai
March 2005, European journal of nuclear medicine and molecular imaging,
A Rephaeli, and A Aviram, and E Rabizadeh, and M Shaklai
September 2004, European journal of nuclear medicine and molecular imaging,
A Rephaeli, and A Aviram, and E Rabizadeh, and M Shaklai
December 1999, The Journal of biological chemistry,
A Rephaeli, and A Aviram, and E Rabizadeh, and M Shaklai
July 1984, The American journal of physiology,
A Rephaeli, and A Aviram, and E Rabizadeh, and M Shaklai
January 1998, Anticancer research,
A Rephaeli, and A Aviram, and E Rabizadeh, and M Shaklai
January 1987, Haematologica,
Copied contents to your clipboard!