Susceptibility to the long-term anxiogenic effects of an acute stressor is mediated by the activation of the glucocorticoid receptors. 2011

Mira Jakovcevski, and Melitta Schachner, and Fabio Morellini
Universitätsklinikum Hamburg-Eppendorf, Zentrum für Molekulare Neurobiologie Hamburg, Hamburg, Germany.

The specificity of the response of an organism is an important variable influencing stress-related parameters and psychopathological states. We have shown that trait anxiety in C57BL/6 mice, determined by their emergence latencies in the free choice open field test, positively correlates with the long-term behavioral and neuroendocrinological changes induced by a stressor. Here, we show that this interindividual variability is caused by a different reactivity of the hypothalamus-pituitary-adrenal (HPA) axis upon exposure to a stressor. Mice with high trait anxiety (long emergence latency, LEL) display a more pronounced stress-induced activation of the HPA axis than mice with low trait anxiety (short emergence latency, SEL). Moreover, stress-induced activation of tyrosine hydroxylase and corticotropin-releasing hormone occurred in LEL but not SEL mice. In search of the molecular mechanisms underlying these differences, we found that under non-stressed conditions mRNA and protein levels of the glucocorticoid receptor in the hippocampus were higher in LEL mice compared to SEL mice. Also, systemic injection of the glucocorticoid receptor antagonist RU486 decreased the stress-induced activation of the HPA axis and the long-term anxiogenic effects of stress observed in LEL mice. Finally, the rewarding properties of cocaine were enhanced in LEL mice compared to SEL mice, suggesting a causal link between trait anxiety, stress activity and the behavioral responses to drugs of addiction.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D003042 Cocaine An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine HCl,Cocaine Hydrochloride,HCl, Cocaine,Hydrochloride, Cocaine
D003216 Conditioning, Operant Learning situations in which the sequence responses of the subject are instrumental in producing reinforcement. When the correct response occurs, which involves the selection from among a repertoire of responses, the subject is immediately reinforced. Instrumental Learning,Learning, Instrumental,Operant Conditioning,Conditionings, Operant,Instrumental Learnings,Learnings, Instrumental,Operant Conditionings
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D003975 Diazepam A benzodiazepine with anticonvulsant, anxiolytic, sedative, muscle relaxant, and amnesic properties and a long duration of action. Its actions are mediated by enhancement of GAMMA-AMINOBUTYRIC ACID activity. 7-Chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one,Apaurin,Diazemuls,Faustan,Relanium,Seduxen,Sibazon,Stesolid,Valium
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal

Related Publications

Mira Jakovcevski, and Melitta Schachner, and Fabio Morellini
November 1999, Brain research,
Mira Jakovcevski, and Melitta Schachner, and Fabio Morellini
September 2008, European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology,
Mira Jakovcevski, and Melitta Schachner, and Fabio Morellini
June 2015, Archives of pharmacal research,
Mira Jakovcevski, and Melitta Schachner, and Fabio Morellini
March 1985, Neuroscience letters,
Mira Jakovcevski, and Melitta Schachner, and Fabio Morellini
February 2018, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology,
Mira Jakovcevski, and Melitta Schachner, and Fabio Morellini
January 2017, Medecine sciences : M/S,
Mira Jakovcevski, and Melitta Schachner, and Fabio Morellini
July 2003, Acta paediatrica (Oslo, Norway : 1992),
Mira Jakovcevski, and Melitta Schachner, and Fabio Morellini
March 2012, General and comparative endocrinology,
Mira Jakovcevski, and Melitta Schachner, and Fabio Morellini
January 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!