Tumor initiators and promoters in the induction of Epstein-Barr virus. 1979

H zur Hausen, and G W Bornkamm, and R Schmidt, and E Hecker

The effect of various tumor initiators and promoters on induction of persisting Epstein-Barr virus (EBV) in different lines of lymphoblastoid cells was analyzed. Neither five polycyclic aromatic hydrocarbons, amongst them potent tumor initiators (e.g., 7,12-dimethylbenz[a]anthracene), nor the potent (ultimate) liver carcinogen N-acetoxy-N-2-acetylamino-fluorene induced EBV. A series of compounds, representing three classes of tumor-promoting diterpene esters (e.g., 12-O-tetradecanoylphorbol-13-acetate), efficiently induced EBV in persistently infected cells. The concentration required for maximal induction ranged between 0.5 and 100 nM. Some nonpromoting diterpenes (phorbol, 4alpha-phorbol-12,13-didecanoate, and ingenol) did not induce EBV. However, the nonpromoters, resiniferatoxin and 12-deoxyphorbol-13-decatrienoate, were effective, whereas anthralin, a tumor promoter, did not induce EBV. In three lines of EBV genome-carrying cells (Raji, NC-37, and RPMI 64-10) only abortive induction was noted, leading exclusively to synthesis of early antigen. In cells of lines with low spontaneous virus release (P3HR-1, B95-8, and QIMR-Wil), upon treatment with tetradecanoylphorbol acetate, approximately 20-40 times more viral DNA was recovered as compared to untreated controls. Viral DNA from tetradeca-noylphorbol acetate-induced cultures revealed the same restriction endonuclease cleavage pattern as viral DNA obtained from noninduced cells. Within 10 days after induction, release of infectious virus increased approximately by one order of magnitude. Prostaglandins, reported to be released after treatment with tumor promoters, were ineffective in virus induction under the conditions tested.

UI MeSH Term Description Entries
D011083 Polycyclic Compounds Compounds which contain two or more rings in their structure. Compounds, Polycyclic
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003043 Cocarcinogenesis The combination of two or more different factors in the production of cancer. Cocarcinogeneses
D004224 Diterpenes Twenty-carbon compounds derived from MEVALONIC ACID or deoxyxylulose phosphate. Diterpene,Diterpenes, Cembrane,Diterpenes, Labdane,Diterpenoid,Labdane Diterpene,Norditerpene,Norditerpenes,Norditerpenoid,Cembranes,Diterpenoids,Labdanes,Norditerpenoids,Cembrane Diterpenes,Diterpene, Labdane,Labdane Diterpenes
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications

Related Publications

H zur Hausen, and G W Bornkamm, and R Schmidt, and E Hecker
January 1983, Princess Takamatsu symposia,
H zur Hausen, and G W Bornkamm, and R Schmidt, and E Hecker
April 1984, International journal of cancer,
H zur Hausen, and G W Bornkamm, and R Schmidt, and E Hecker
February 1980, Virology,
H zur Hausen, and G W Bornkamm, and R Schmidt, and E Hecker
January 1998, Journal of cancer research and clinical oncology,
H zur Hausen, and G W Bornkamm, and R Schmidt, and E Hecker
January 1982, Cancer letters,
H zur Hausen, and G W Bornkamm, and R Schmidt, and E Hecker
January 2010, Biochimica et biophysica acta,
H zur Hausen, and G W Bornkamm, and R Schmidt, and E Hecker
January 1983, The EMBO journal,
H zur Hausen, and G W Bornkamm, and R Schmidt, and E Hecker
March 1983, Proceedings of the National Academy of Sciences of the United States of America,
H zur Hausen, and G W Bornkamm, and R Schmidt, and E Hecker
December 1986, AIDS research,
H zur Hausen, and G W Bornkamm, and R Schmidt, and E Hecker
January 1985, Haematology and blood transfusion,
Copied contents to your clipboard!